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Crystallization of Dense Binary Hard-Sphere Mixtures with Marginal Size Ratio
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Molecular dynamics simulations are performed for binary hard-sphere mixtures with a size ratio of
v = 0.9 and a volume fraction of ¢ = 0.58 over a range of compositions. We show how, at this high
volume fraction, crystallization depends sensitively on the composition. Evidence is presented that
crystallization in these mixtures does not proceed by the standard nucleation and growth paradigm.
Rather, some crystallite forms almost immediately and then an interplay between compositional fluctua-
tions and crystal growth is able to dramatically extend the time scale on which further crystallization
occurs. This can be seen as a form of geometric frustration.
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To be stable in the bulk amorphous solid phase, metallic
glass formers must contain a mixture of several constitu-
ents [1]. The traditional explanation of the inability of a
glass to crystallize is based on geometric frustration [2]
which would suggest that even one component metallic
glass formers should be stable, if quenched rapidly and
deeply enough. The microscopic details of why metallic
glass formers require several components to be stable
against crystallization remain unclear. Overpacked hard-
sphere fluids form an important and commonly studied
reference model for the glassy state [3]. For this model it
is observed that a fluid of identically sized hard spheres, at
high densities, crystallizes so rapidly that it is not mean-
ingful to talk of a metastable fluid state [4]. Even randomly
packed granular spheres can show signs of crystallization
[5,6]. However, by adding a small amount of variation in
the particle size (i.e., polydispersity), packing is only af-
fected to a small degree, as are certain dynamical correla-
tion functions measured in the overpacked fluid phase [7].
In contrast the crystallization process can be slowed down
by orders of magnitude [4,7-10]. A microscopic under-
standing of why the crystallization of overpacked hard-
sphere fluids is so sensitive to the amount of polydispersity
is relevant to metallic glass formers, which can be nano-
crystalline [1], and is also an important problem in its own
right.

Two possible resolutions of this problem have been
offered. Numerical simulations combined with nucleation
theory on polydisperse hard spheres have concluded that
the surface tension of the nucleus rises at high volume
fractions and that this effect becomes much stronger when
the polydispersity is increased [11]. By contrast, MD
simulations of binary hard-sphere mixtures suggest that
slow compositional fluctuations are responsible for the
suppression of crystallization [4]. This suggestion is sup-
ported by recent experimental studies of crystallization in
hard-sphere colloids. Using skewed and symmetrical dis-
tributions [12,13], bimodal distributions [8], and the sys-
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tematic reduction of polydispersity through fractionation
[9,10,14] these studies strongly support the idea that com-
positional fluctuations control crystallization in polydis-
perse hard spheres.

We begin addressing this issue by considering the as-
sumptions necessary for the valid application of classical
nucleation theory. It is assumed that individual nuclei form
spontaneously and independently from each other.
Nucleation theory invokes the concept of a nucleus con-
sisting of a bulk crystal phase, characterized by an intrinsic
free energy that is less than that of the fluid, and an inter-
face which costs free energy due to its surface tension.
Thus the total free energy of the system can be reduced by
decreasing the surface area of the interface or by increasing
the volume of the nucleus. These effects compete against
each other resulting in a critical nucleus. Any nucleus that
is smaller than the critical size is thermodynamically in-
clined to shrink, while one that is larger is inclined to grow.
These thermodynamic arguments are valid only if the
critical nucleus is quite large, and are questionable for
clusters with fewer than 10* particles [15]. Although the
critical nuclei of the systems we study here are much
smaller than 10%, this problem can be obviated by comput-
ing the change in the free energy for the entire system upon
the formation of a critical nucleus [11,16]. Of course one
must then assume there will be a significant free energy
barrier to the formation of the nucleus, a requirement
which may not always be met.

Of the remaining assumptions the most relevant is that
the formation of a nucleus may be realistically projected
onto a single reaction coordinate. The theory can then be
derived from a master equation, in the space of the reaction
coordinate, with it typically being assumed that the process
is in the steady state [15].

For the present case of dense binary mixtures, which
form substitutional crystals [4,17], we use molecular dy-
namics simulations to investigate the mechanism respon-
sible for the dramatic slowing of the crystallization rate
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upon a small increase in polydispersity, and enquire
whether this is compatible with nucleation theory. This is
difficult, even with a large amount of computer power,
because ideally it requires the simulations to have many
particles, to be of a long duration, and to be repeated many
times. For this reason we restricted the number of particles
to a modest N = 10, 976. While it is known that many
more particles are needed to completely eliminate finite
size effects [18], we expect any artifacts to be quantitative
only. Thus we aim to correctly identify the qualitative
mechanisms, rather than to quantify a truly macroscopic
system.

All simulations were of binary mixtures with a size ratio
of y = o,/0o; = 0.9, where the subscripts / and s denote
the larger and smaller particles, respectively. Periodic
boundary conditions with a cubic unit cell were used.
The simulations, starting from a perfect FCC crystal at
low volume fraction, were melted and the resulting fluid
was then compressed to a volume fraction of ¢ = 0.58 (for

details see [4]). The time unit is & +/m/kgT where & =
(N0, + N;o;)/N is the average particle diameter. A num-
ber of compositions X = N, /N were simulated as given in
the legend of Fig. 1. Thus the polydispersity (the standard
deviation of the particle size divided by the mean particle
size) varied from s = Ofor X = 0(or X = 1)tos = 0.054
for X = 0.5. Particles which are in a crystalline environ-
ment (called simply crystallite particles) were identified
using the following variation on the method given in
Ref. [19]. The bond network was determined using a
modified Delaunay tessellation as detailed in [20]. All
which V06 _ ¢ gen(i)gs, () > 8.5
were then labeled as crystallite particles, where the first
sum is over all the particles bonded to the ith particle, Ny(i)
is the number of particles bonded to the ith particle, and the
variables ¢, form a 13 dimensional unit vector, calculated
from the 13 different [ = 6 spherical harmonics, as de-
tailed in [19,21].

Figure 1 shows (a) the crystallinity {p.) (% of particles
identified as being in a crystallite environment) and (b) the
relative composition of those particles, as functions of time
for various system compositions. The effect of varying the
composition, or polydispersity, is readily apparent, particu-
larly in Fig. 1(a). While the simulations which were nearly
single component (X = 0.3 and X = 0.825) readily under-
went a large degree of crystallization, the simulations with
0.5 = X = 0.78 only crystallized a little on the time scale
of the simulations. For the compositions of X = 0.5 and
X = 0.7 the crystallization was almost totally suppressed
on this time scale, with only 4.4% and 3.9% of crystallite
particles, respectively. In Fig. 1(b) it can be seen that the
crystallites that do form have a strongly enhanced propor-
tion of large particles relative to the melt. Extending the
simulations to ¢ = 6500 leads to more crystallization
(7.5% crystallite particles for X = 0.5 and 11.5% for X =
0.7). In slightly changing the composition from X = 0.7 to
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FIG. 1 (color online). Results from simulations, each repeated
10 times (except for X = 0.7 and 0.78 which were repeated 100
times), at various compositions X = N,/N = N,/(N; + N,).
(a) The average percentage of particles by number identified
as being crystallite {p,.), plotted against time ¢ for the composi-
tions given in the legend (integer values for Ng which gave
values of X closest to those in the legend were used). Note: the
data for the composition of X = 0.5 and X = 0.7 are not
distinguishably different. (b) The relative portion of large parti-
cles (1 —X,.)/(1 —X) which are crystallite, where X, is the
composition of the crystallite particles and X is the composition
of the total system, for compositions given in the legend (with
the exception of X = 1).

X = 0.78 a considerable difference is seen in the crystal-
lization. The composition of X = (.78 crystallizes with
relatively fewer large particles, and does so more rapidly.

Interestingly X = 0.7 is the composition for which the
equilibrium crystal first undergoes a phase transition into
two substitutional crystals at different compositions upon
increasing the pressure [17,22]. In binary mixtures the
eutectic composition is often associated with the suppres-
sion of freezing. While the phase diagram for this size ratio
v =10.9 is not eutectic, it does become so when it is
reduced to y = 0.875 with a eutectic composition very
close to X = 0.7 [17,22].

To investigate the compositional effect on crystallization
further, for X = 0.7 we considered the largest connected
region of crystallite particles for each of the 100 simula-
tions, at the time ¢ = 3000 after the completion of the
quench. A connected region is defined as a set of crystallite
particles which are all connected such that a path exists,
along the bond network for the set, between any pair of
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particles in the set. This analysis uncovered several inter-
esting points. There were typically around 30—45 con-
nected regions to be found in each simulation at this
time. On average, at t = 3000, the largest connected region
contained only 3% of the total particles, but 35% of the
crystallite particles. This value increases to 49% at t =
5000 and 60% at t = 6500. A typical largest connected
region is shown in Fig. 2 which is formed of randomly
close packed plains with defects and twinning. The shape
of this region is complex, containing some voids, with a
very large amount of surface area relative to a sphere. This
is contrary to what one would expect from thermodynam-
ics, but for such deep overpacking, where we observe that
crystallite regions can form on small length scales, an
appeal to thermodynamics cannot be justified.

In Fig. 3 (main graph) a histogram of the composition of
the noncrystallite particles relative to the center of mass for
the largest connected region is displayed, averaged over the
100 simulations at the time of # = 3000. This was com-
puted by placing the periodic boundary conditions such
that the connected regions center of mass corresponded
with the center of the periodic cell. Close to the center of
mass of the connected regions, the noncrystallite particles
have an enhanced fraction of smaller particles with the
larger particles incorporated into the crystallite. So we see
very directly that the early stages of crystallization require
a composition that is rich in large particles. For this to
happen composition fluctuations, which take a long time,
are required. The system does not wait indefinitely for this
very slow process to occur, rather it starts to crystallizee
where the composition is favorable, resulting in a nucleus
with a very large surface area.

FIG. 2 (color online). A typical largest connected region of
crystallite particles, taken from a simulation with X = 0.7 at
time ¢ = 3000. This accounts for 43% of the crystallite particles,
but only 3% of the total particles.

The next question raised is the following: given that
significant crystallite structure appears on such small
length scales, is it long lived? To quantify this, we deter-
mined which particles were crystallite in the X = 0.7
simulations at t = 2000, and then determined what per-
centage of these particles remained crystallite at times ¢ =
2000 + 7 for 50 = 7 = 2000 Fig. 3 (inset). After the first
50 time units have elapsed, 7 = 50, approximately 48% of
the particles which were initially crystallite remained so.
This initial rapid decay is partly due to the sensitivity of the
local structure measure to small displacements, but also
shows that there are some short lived structures with crys-
tallite order. Despite this rapid initial decay, after 7 = 2000
time units fully 35% of the particles which were initially
crystallite remained so. This should be contrasted with the
fact that for the whole system only 3.9% of particles are
crystallite at 7 = 2000. If the crystallite structure were not
stable, the percentage of crystallite particles in the struc-
ture should decay to the overall system average. The fact
that this is clearly not the case constitutes direct evidence
that the system is geometrically frustrated in some manner
[2], i.e., we observe locally favored structures, which are
long lived, but unable to grow appreciably on the given
time scale, ¢ < 4000.

In order to determine if the system is in a steady state in
the precritical region (prior to significant crystallization),
the percentage of crystallite particles p. was determined at
different times following the quench for each of the 100
independent simulations at X = 0.7. Figure 4 shows the
probability density of finding a simulation with percentage
p. crystallite particles at the times of ¢+ = 3000, 5000, and
6500. The shape of the distribution, determined from the
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FIG. 3. Main graph: The composition of the noncrystallite
particles X(r), divided by the total composition X = 0.7, as a
function of the distance from the center of mass of the largest
connected region of crystallite particles r, at the time of ¢ =
3000 after the quench. Data from 100 independent simulations.
Inset: The percentage of crystallite particles, %C,, present at
time ¢ = 2000 that remained crystallite at time ¢ = 2000 + 7.
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FIG. 4 (color online). The probability density of finding a
simulation with percentage p. of crystallite particles at times
of + = 3000, 5000, and 6500, for the simulations with a total
composition of X = 0.7. The results from 100 independent
simulations are shown.

ensemble of independent simulations, is clearly changing
with time. At these times the average percentage of crys-
tallite particles p. increases from (p.) = 3% — 6% —
11.5%. For this composition the system is crystallizing in
a time dependent manner and is not close to approach-
ing the steady state. It can be seen that a limited number of
the simulations undergo an appreciable amount of crystal-
lization, breaking the geometric frustration and behaving
in a manner that is in part common with the nucleation
paradigm.

In summary, we have shown that the crystallization
process in deeply undercooled or overpacked polydisperse
fluids can be complex. For the composition of X = 0.7 we
have shown very directly that the initial crystallization
process occurs by selecting regions in the fluid which
have a favorable composition. Once selected, these regions
remain long lived but are frustrated from further growth.
These structures are consistent with precursor structures
identified in both experiments [9,10,14] and simulations
[23]. At longer times a reasonable number of simulations
were able to break this frustration and crystallization could
proceed at the composition of the total system. However
the system was nonergodic due to long lived crystallite
structures being present and was not approaching a steady
state. The frustration can be controlled by changing the
composition or the size ratio. The simulations with X =
0.7 showed significantly slower crystallization than did
those with X = 0.78. We would expect that reducing the
size ratio below y = 0.9 would have a similar effect.

Regardless of the composition, all of the simulations
were able to form a small amount of crystallite on a very

short time scale, which would remain long lived and tend
to grow. So strong was this tendency that it would be
meaningless to consider a critical nucleus size for these
systems. Either the system becomes frustrated, due to slow
composition fluctuations, or it crystallizes extremely
rapidly.
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