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Isomorphs are lines in the density-temperature plane of certain “strongly correlating” or “Roskilde
simple” liquids where two-point structure and dynamics have been shown to be close to identical
up to a scale transformation. Here we consider such a liquid, a Lennard-Jones glass former, and
investigate the behavior along isomorphs of higher-order structural and dynamical correlations. We
then consider an inverse power law reference system mapped to the Lennard-Jones system [Pedersen
et al., Phys. Rev. Lett. 105, 157801 (2010)]. Using the topological cluster classification to identify
higher-order structures, in both systems we find bicapped square antiprisms, which are known to be
a locally favored structure in the Lennard-Jones glass former. The population of these locally favored
structures is up to 80% higher in the Lennard-Jones system than the equivalent inverse power law
system. The structural relaxation time of the two systems, on the other hand, is almost identical, and
the four-point dynamical susceptibility is marginally higher in the inverse power law system. Upon
cooling, the lifetime of the locally favored structures in the Lennard-Jones system is up to 40% higher
relative to the reference system. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4830416]

I. INTRODUCTION

The claim that many of the structural properties of liq-
uids derive from repulsive hard core-like interactions, which
often are of an inverse power law (IPL) form, is a concept
which has a considerable history.1–4 Thus one might argue
that by removing the attractive interactions, thereby arriving
at an inverse power law model, any structural properties, in-
cluding those related to glassy behavior at low temperatures,
are preserved. The advantage is that IPL models exhibit scale
invariance, which maps points in the phase diagram to equiva-
lent points along so-called isomorph lines.5–7 This results in a
considerable conceptual simplification of the low-temperature
behavior and, in particular, reduces the phase diagram to a
one-dimensional representation. In addition to structural
and thermodynamic quantities, dynamical quantities such as
the relaxation time can also be mapped from one system
to another for both Newtonian dynamics8, 9 and Brownian
dynamics.10, 11 Furthermore, the two classes of dynamics can
be mapped to one another.12, 13

Recently, this concept of scaling has been taken a step
further and applied to models such as a Lennard-Jones (LJ)
glass former, for which no exact mapping exists. Lines pre-
viously related by scale invariance are replaced by isomorphs
in the phase diagram, along which any two points are approx-
imately equivalent. A convenient way to measure the degree
to which this invariance holds is to observe to what degree the
fluctuations of the potential energy U and the virial W (see
Eq. (1)) in constant volume ensembles are correlated.7, 14–17

While IPL liquids display perfect correlation between the
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fluctuations of U and W , it is proposed in these papers that
liquids which exhibit a high degree of correlation obey a num-
ber of scaling laws for their static structural, dynamical, and
thermodynamic properties. Such liquids have been termed
“strongly correlating” or “Roskilde simple” liquids.18, 19 A
perspective on this approach has recently appeared,20 and a
paper summary of the theory is available in Ref. 21.

A connection is made between Roskilde simple liquids
with attractions and purely repulsive IPL liquids by the gradi-
ent γ of a linear fit for a scatter plot of U and W fluctuations.
An IPL reference potential with exponent n = 3γ reproduces
to a good approximation the pair structure and dynamics for
the full LJ system with attractions at the state point where γ

is measured.7, 22 Moreover for systems with good isomorphs
through the phase diagram, it has been conjectured that γ is
a density-dependent parameter, i.e., γ = γ (ρ), and as such
the IPL approximation remains valid along the isochor. This
conjecture has been shown to break down however for liq-
uids where the potential is truncated at ranges shorter than
the mean inter-particle separation,18, 23 or if the correlation be-
tween U and W drops significantly along the isochor such that
the liquid is no longer strongly correlating.

Pedersen et al. employed this conjecture to derive a re-
pulsive IPL potential that approximates the attractive Kob-
Andersen (KA) Lennard-Jones glass former.24 The IPL sys-
tem matched the pair structure, dynamics, and fragility of the
KA mixture along the ρ = 1.2 isochor. A system with inter-
actions truncated at the minimum of the potential following
Weeks, Chandler, and Andersen (WCA)2 did not reproduce
the dynamics, although its pair structure was very similar.25

The correspondence between the purely repulsive IPL sys-
tem and the Lennard-Jones system with attractions held its
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validity over a range of temperatures from within the Arrhe-
nius liquid regime to deeply supercooled states.

In order to assess the usefulness of these ideas as ap-
plied to a phenomenon such as the slowing down of a glass
former upon cooling, it is crucial to measure how well the
proposed equivalence applies to quantities of possible phys-
ical relevance, such as those measuring the structural order-
ing of liquids.26, 27 Thus far numerical investigations into the
invariance of structure and dynamics along isomorphs fo-
cused on two-point correlations, i.e., g(r) and Fs(k, t).7, 24

In this paper, we go one stage further and test the valid-
ity of isomorphs using higher order correlation functions for
structure and dynamics measured with the topological clus-
ter classification.28, 29 In particular, we examine the behav-
ior of “11A” bicapped square antiprism clusters of 11 parti-
cles, which have been identified as being prevalent structures
in the KA supercooled liquid,27, 30, 31 to be slowly relaxing27

and related to a structural-dynamical phase transition in the
same system.32 Moreover, ultra-stable KA glasses formed by
(in-silico) chemical vapor deposition have been shown to be
rich in 11A.33 Finally, the presence and size of domains of
11A clusters has been suggested as a way to rationalize the
difference in fragility between the full KA LJ system with
attractions and its WCA counterpart with purely repulsive
interactions.31

Here we use the yield of 11A as an order parameter for
structure, and the lifetime autocorrelation function as an or-
der parameter for the many-particle dynamical correlations on
cooling between the Kob-Andersen Lennard-Jones model and
its mapped inverse power law reference system. We find that,
although the model system was previously considered to re-
produce the structure and dynamics of the full system with
attractions, the 11A is in fact 80% more numerous and ex-
hibits a substantially longer lifetime at low temperature state
points.

This paper is organized as follows. We briefly review
key properties in strongly correlating liquids in Sec. II A and
the means to identify isomorphs in Sec. II B. We describe
our simulations in Sec. II C and our structural analysis in
Sec. II D. In our results, we first consider the behavior
of higher-order structure and dynamics along isomorphs for
strongly correlating liquids in Sec. III A. We then turn to the
structural and dynamical analysis of the Lennard-Jones and
its model inverse power law system as dynamical arrest is ap-

proached in Sec. III B. Sections IV and V concern the discus-
sion and conclusion, respectively.

II. METHODS

A. Roskilde simple liquids

In Secs. II A and II B, we summarize the theory of
Roskilde simple liquids and isomorphs. In the canonical
NV T -ensemble (constant number of particles N, volume V
and temperature T), the pressure of a liquid P is the sum of
contributions from ideal gas and interaction terms:

PV = NkBT + W. (1)

The contributions from interactions are thus expressed in the
virial term W which is given by

W (rN ) = −1
3

N∑

i=1

N∑

i<j

riju
′(rij ). (2)

The fluctuations of U and W between configurations in the
NVT ensemble can be represented on a scatter plot, as shown
in Fig. 1. The degree of correlation between the variables is
characterized by Pearson’s R coefficient

R = ⟨#W#U ⟩
√

⟨(#W )2⟩
√

⟨(#U )2⟩
, (3)

where #U = U − ⟨U⟩ and #W = W − ⟨W ⟩. Roskilde sim-
ple liquids are defined empirically as liquids where R > 0.9.14

The parameter that defines the “slope” of the correlation be-
tween the U and W fluctuations is γ :

γ = ⟨#W#U ⟩
⟨(#U )2⟩

. (4)

The parameters R and γ are state point dependent and
liquids may demonstrate the strongly correlating property
(R > 0.9) in some regions of phase space and not in others.
For example, in the vicinity of the critical point, liquids are
not strongly correlating.20 In Figs. 1(a)–1(c) we show scatter
plots of W/N versus U/N for an IPL system, a strongly cor-
relating liquid state point (KA LJ), and a weakly correlating
liquid state point (monodisperse LJ), respectively. Perfect cor-
relation is obtained for the IPL liquid as W = γU strictly for
IPL potentials [Fig. 1(a)].

FIG. 1. Scatter plots of the potential U and the virial W , squares, and linear fits, red lines. (a) KA IPL, ρ = 1.2, T = 1.0, perfect correlation of U and W .
(b) KA LJ, ρ = 1.2, T = 1.0, strongly correlating. (c) Monodisperse LJ above the critical point, ρ = 0.32, T = 1.3, weakly correlating.



234505-3 Malins, Eggers, and Royall J. Chem. Phys. 139, 234505 (2013)

B. Isomorphs

Isomorphs are curves through regions of the phase dia-
gram where there are strong correlations between the fluc-
tuations of U and W . A number of structural, dynamical,
and thermodynamic quantities are invariant at state points
along isomorphs when presented in a set of reduced units.
The theory can be reduced to a single approximation for the
relative Boltzmann weights that identical microstates of two
“isomorphic” state points34 contribute to the partition func-
tion. Two state points (ρ1, T1) and (ρ2, T2) are isomorphic if
the statistical weights of representative microscopic configu-
rations at state point 1 (rN

(1)) are proportional to the statistical
weights of scaled configurations of state point 1 at state point
2, where the configurations are scaled between the state points
as rN

(2) = ρ
1/3
1 rN

(1)/ρ
1/3
2 , i.e.,7

exp
[
−U

(
rN

(1)

)/
kBT1

]
= C12 exp

[
−U

(
rN

(2)

)/
kBT2

]
. (5)

The parameter C12 only depends on the state points 1 and 2
and not on the details of the microscopic configurations. The
theory of isomorphs is rigorous when C12 = 1, which only
occurs for IPL potentials. For other potentials the isomorphs
are approximate, where the strength of the approximation de-
pends on how close R is to unity between state points on an
isomorphic curve.

The consequence of Eq. (5) is that a number of quanti-
ties measured along isomorphs can be collapsed when cast
in terms of reduced units for energy (kBT), length (ρ−1/3),
and time (

√
m/kBTρ2/3 for Newtonian dynamics). As the mi-

crostates of isomorphic state points scale trivially onto each
other, all structural measurements are invariant to a good ap-
proximation. Newtonian dynamics in reduced time are invari-
ant between isomorphic state points as long as the timescale
of the thermostat is adjusted to be invariant between the state
points. Invariant thermodynamic properties along isomorphs
include the excess entropy, the configurational entropy, and
the isochoric specific heat.7

The shape of isomorphic curves can be calculated for po-
tentials that are the sum of IPLs with differing prefactors AIPL

and exponents γ using the method outlined in Ref. 35. For LJ
potentials, as employed by the KA model, a scaling function
is defined relative to a reference state point for the isomorph
with (ρ∗, T∗) and γ ∗. The scaling function h(ρ̃) is

h(ρ̃) = ρ̃4(γ ∗/2 − 1) − ρ̃2(γ ∗/2 − 2), (6)

where ρ̃ = ρ/ρ∗. h(ρ̃)/T is constant along isomorphs mean-
ing that all state points along an isomorph can then be calcu-
lated from the value of h(ρ̃)/T at the reference state point,
i.e., h(ρ̃)/T = h(1)/T ∗.

C. Simulation details

We consider the isomorphs of the KA LJ mixture and its
reference KA IPL system defined in Ref. 24 in 3D molecular
dynamics simulations with periodic boundary conditions. The
IPL potential reads

uαβ(r) = AIPLεαβ

(σαβ

r

)3γ

, (7)

where the parameters AIPL = 1.9341 and γ = 5.16 are cal-
culated from our simulations. The values of these parameters
are calculated, respectively, from gradients of scatter plots of
the LJ virial versus the LJ potential, and the LJ potential ver-
sus IPL potential without the AIPL prefactor, across the state
points ρ∗ = 1.2 and T∗ values of 0.5, 0.525, 0.6, 0.75, 1.0, and
2.0. The subscripts α and β refer to the different species in the
KA binary mixture which for both IPL and LJ systems is com-
posed of 80% large (A) and 20% small (B) species particles
of the same mass m.36 The nonadditive interactions between
each species, and the cross interaction, are given by σ AA = σ ,
σ AB = 0.8σ , σ BB = 0.88σ , ϵAA = ϵ, ϵAB = 1.5ϵ, and ϵBB

= 0.5ϵ. The results are quoted in reduced units with respect
to the A particles, i.e., we measure length in units of σ , energy
in units of ϵ, time in units of

√
mσ 2/ϵ, and set Boltzmann’s

constant kB to unity.
We truncate and shift both LJ and IPL potentials at

2.5σαβ and simulate in the NV T -ensemble for a system of N
= 1000 particles, NA = 800. The temperature is controlled us-
ing the Nosé-Hoover thermostat with coupling constant τNH

= 0.03. The values of τNH are adjusted along the isomorphs
such that they are identical when reduced by

√
m/kBTρ2/3.

The initial configuration at ρ = 1.2, T = 2.0 is a face-centred
cubic crystal which is melted and the liquid equilibrated be-
fore trajectories are sampled. Each lower temperature state
point on the ρ = 1.2 isochor is thoroughly equilibrated af-
ter an instantaneous quench from the previous higher T state
point. Six trajectories of 300τA

α length are sampled for each
state point, where τA

α is the alpha-relaxation time of the large
particles. We determine τA

α by fitting a stretched exponential
(Kohlrausch-Williams-Watts) form to intermediate scattering
functions (ISFs) of the A-species such as those in Fig. 6(a).
The trajectories consist of 3000 configurations, where each
configuration is separated by τA

α /10.
We consider six isomorphs for both the KA LJ and

KA IPL models, where the reference state points are ρ∗

= 1.2 with T∗ = 0.5, 0.525, 0.6, 0.75, 1.0, and 2.0. The ini-
tial configuration for a new state point along an isomorph
is obtained by scaling the positions and velocities from a
single configuration at the reference state point, using ri

= (ρ∗)1/3r∗
i /ρ

1/3 and vi = T 1/2v∗
i /(T ∗)1/2. The new state

point is equilibrated for at least 300τA
α before sampling six

trajectories, each 300τA
α in length, for analysis. The long equi-

libration time is sufficient to ensure that there is no ageing of
the system once the trajectories are sampled. This is checked
by ensuring there is no evolution in the pair correlation func-
tions, ISFs, and number of clusters identified by the topolog-
ical cluster classification during the trajectories. The equili-
bration of the isomorphic state points on the ρ = 2.0 isochor
for the KA LJ system is checked independently by equili-
brating a liquid at high T for ρ = 2.0, and then quenching
down slowly to the lower temperatures. The results obtained
with the quenching protocol match those measured for the
state points obtained by scaling along the isomorphs from
ρ∗ = 1.2.

Another benefit of the equilibration is that it ensures the
trajectories sampled are statistically independent from the ini-
tial configuration of the ρ∗ = 1.2 reference state point, and
from the trajectories at other isomorphic state points.37 We
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FIG. 2. Isomorphs in the KA LJ phase diagram. (a) The correlation coefficient for U-W fluctuations along the ρ = 1.2 isochor. (b) The shape of isomorphs in
the phase diagram is described by h(ρ̃) ∝ T .

traverse out isomorphs from ρ∗ = 1.2 to ρ = 1.0, 1.4, 1.6,
1.8, and 2.0. The ρ = 1.0 state points for the KA LJ model
crystallize on all isomorphs except ρ∗ = 1.2, T∗ = 2.0, in-
dicating that the crystallization time along isomorphs is not
invariant.

When comparing higher-order structure and dynamics
between the KA LJ and KA IPL models on the ρ = 1.2 iso-
chor, we consider temperatures T = 0.45, 0.5, 0.525, 0.6, 0.75,
1.0, and 2.0. Due to the long runtime of the simulations at
the T = 0.45 state points, only two trajectories are sampled
for analysis after the quench and initial equilibration period
(>300τA

α ).
In Fig. 2(a) we show the correlation coefficient R for the

U-W fluctuations in the KA LJ mixture. As the temperature
decreases the value of R decreases in an approximately linear
fashion in 1/T for our parameters. In Fig. 2(b) the shape of the
isomorphic curves in the KA LJ phase diagram is shown, as
calculated using Eq. (6).

D. Structural analysis

We analyse the way in which the particles in the su-
percooled liquids are structured using the topological clus-
ter classification (TCC) algorithm.28, 29 This algorithm iden-
tifies a number of local structures. Using the TCC, for the
KA mixture we have shown that the relevant structure which
forms long-lived and slow domains of particles is the bi-

capped square antiprism, 11A.27 These are predominantly
formed with a small B-type particle at the centre surrounded
by mostly 10, sometimes 9, and occasionally 8 larger A-type
particles. This structure is also the minimum energy cluster
for 11 KA particles.27 An 11A is illustrated in Fig. 3(a).

The first stage of the TCC algorithm is to identify the
bonds between neighboring particles. The bonds are detected
using a modified Voronoi method with a maximum bond
length cut-off of rc = 2.0 for all types of interaction (AA, AB,
and BB). A parameter which controls identification of four- as
opposed to three-membered rings, fc, is set to unity thus yield-
ing the direct neighbors of the standard Voronoi method.38

Groups of 11 particles which are topologically equivalent to
11A are detected based on the bond network. Further details
can be found in Refs. 28 and 29.

The maximum bond length rc in the cluster detection is
greater than the longest bond length detected at any of the
state points for the KA LJ and KA IPL models studied in
this paper (including along the isomorphs). This means that
the detection of the clusters is, in effect, independent of any
length scale. Thus the configurations along isomorphs do not
need to be rescaled back to the reference density ρ∗ = 1.2, or
the parameter rc scaled along the isomorphs, in order that the
detection of clusters is fair and consistent between isomorphic
state points.

In order to investigate the cluster lifetimes, we employ
the dynamic topological cluster classification algorithm.26, 27

FIG. 3. The statics and dynamics of 11A clusters for the KA IPL isomorphs. As this is an IPL system the isomorphs are rigorous. (a) The fraction of particles
N11A/N detected within 11A clusters by the TCC algorithm. The temperatures for the reference density ρ∗ = 1.2 are T = {1.0, 0.75, 0.5}. Error bars show plus
and minus two standard deviations from the mean. Inset illustrates the 11A bicapped square antiprism. (b) The lifetime autocorrelation function P11A(τ ℓ ≥ t)
of the 11A clusters for the most deeply supercooled state points, ργ /T = 5.12.
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FIG. 4. The statics and dynamics of 11A clusters for the KA LJ isomorphs. (a) The fraction of particles N11A/N detected within 11A clusters by the TCC
algorithm. The temperatures for the reference density ρ∗ = 1.2 are T = {1.0, 0.75, 0.5}. Error bars are as per Fig. 3(a). (b) The lifetime autocorrelation function
P11A(τ ℓ ≥ t) of the 11A clusters for the most deeply supercooled state points, h(ρ̃)/T = 2.0.

A lifetime τ ℓ is assigned to each “instance” of an 11A, where
an instance is defined by the unique indices of the particles
within the cluster. Each instance of a cluster occurs between
two frames in the trajectory and the lifetime is the time differ-
ence between these frames. Any periods where the instance
is not detected by the TCC algorithm are shorter than τA

α

in length, and no subset of the particles becomes un-bonded
from the others during the lifetime of the instance.

III. RESULTS

A. Structure and dynamics across isomorphic
state points

We begin by analysing the structure and dynamics along
the isomorphs for the KA IPL system. In Fig. 3(a) the number
of particles detected within 11A clusters along three different
isomorphs for the KA IPL system is shown. The isomorphs
for this system are exact and hence N11A/N is identical across
all state points along an isomorph, within the statistical lim-
its of the data. The lifetime autocorrelation functions for the
11A cluster P11A(τ ℓ ≥ t) all collapse once the data have been
normalized by τA

α . These results demonstrate that higher or-
der correlations in structure and dynamics are invariant along
isomorphs in IPL systems, as expected.

We move on to the full KA LJ system where structure and
dynamics are expected to be invariant along isomorphs to a
good approximation. As Figs. 4(a) and 4(b) show, there are in

fact continuous changes in N11A/N and P11A(τ ℓ ≥ t) between
isomorphic state points, yielding a difference of up to 40%
for the most deeply supercooled state points. The relative dif-
ferences in these quantities between isomorphic state points
are much larger than the relative differences in two-body
static and dynamic correlation functions g(r) and FA

s (k, t), cf.
Ref. 7. This shows that isomorphs are perhaps less accurate in
the regime of glassy dynamics, which is dominated by strong
many-particle correlations.

B. Comparison of the purely repulsive system
to the full Lennard-Jones system

In this section, we compare structural and dynamical fea-
tures of the KA LJ system and its purely repulsive IPL refer-
ence system. In Figs. 5(a)–5(c), we compare the partial radial
distribution functions for the systems with and without attrac-
tions. The partial radial distribution functions are broadly sim-
ilar between the two models. The largest differences are seen
for gBB(r), and around the first of the peak of gAB(r). We note
that the partial radial distribution functions from both the IPL
and WCA models are good matches for those pertinent to the
full LJ system.24 Note that differences in gBB have also been
observed between dynamically “active” and “inactive” trajec-
tories in the KA mixture.39

We proceed to consider the dynamics in the two sys-
tems by plotting the self intermediate scattering function for
the A particles FA

s (k, t) and the dynamic susceptibility χ4 in

FIG. 5. Partial radial distribution functions for the KA LJ model (black lines) and its IPL reference system (red lines). The state point is ρ = 1.2, T = 0.45.
(a) gAA(r), (b) gAB(r), and (c) gBB(r).
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FIG. 6. The dynamics of the KA LJ and IPL variants for ρ = 1.2 and T = {2.0, 1.0, 0.75, 0.6, 0.525, 0.5, 0.45}. The (a) self ISF FA
s (k, t) and (b) dynamic

susceptibility χ4.

Figs. 6(a) and 6(b). The self ISFs are well matched between
the two models, and consequently the fragility and degree of
super-Arrhenius behavior in relaxation times are similar. This
scenario contrasts with the WCA truncated approximation for
the KA mixture, where the viscous behavior is found to be sig-
nificantly different between the two models.40 The difference
between the relaxation dynamics of the KA LJ and KA-WCA
models has been attributed to the numbers and spatial extent
of 11A polyhedra41 in the supercooled regime.31

We calculate the dynamic susceptibility χ4(t) following
Lačević et al.,42

χ4(t) = V

N2kBT
[⟨Q(t)2⟩ − ⟨Q(t)⟩2], (8)

where

Q(t) = 1
N

N∑

j=1

N∑

l=1

w(|rj (t + t0) − rl(t0)|). (9)

The overlap function w(|rj (t + t0) − rl(t0)|) is defined to be
unity if |rj (t + t0) − rl(t0)| ≤ a, 0 otherwise, where a = 0.3.

In Fig. 6(b) we see that, except for the lowest temper-
atures, the dynamic susceptibilities are also well matched,
indicating that the degree of cooperativity in the relaxation
dynamics are comparable between the models. At the lowest
temperatures, a discrepancy between the IPL and Lennard-
Jones models appears which grows upon cooling. While finite
size effects cannot be ruled out for these system sizes,43 the
difference between the two systems suggests that the nature
of the dynamic heterogeneity may be somewhat different be-

tween the two systems. In particular, it indicates that the num-
ber of particles in a given dynamically “slow” region may be
higher in the case of the IPL.

So far, measures like the pair correlation function have
proven insufficiently sensitive to resolve the nature of the sub-
tle differences in structure that exist between a Lennard-Jones
liquid and its power-law counterpart, and which increase with
cooling. However, it is clear from Fig. 7(a) that the fraction
of particles found in 11A clusters can differ dramatically, the
fraction being almost twice as large for the Lennard-Jones
liquid as compared to the model system. This difference in-
creases strongly with cooling, and the subtle changes in struc-
ture become more pronounced as the system enters the glassy
regime. As a measure of dynamical properties, we also looked
at the lifetime of 11A clusters in Fig. 7(b). Again, there is
a discrepancy between the two models, with the 11A in the
KA LJ system displaying lifetime autocorrelation functions
that decay more slowly than the KA IPL model. The ratio
⟨τLJ

ℓ ⟩/⟨τ IPL
ℓ ⟩ gives a measure of the ratio of the average life-

time of 11A in the LJ system with respect to the IPL reference
system [inset of Fig. 7(b)]. The ratios indicate that the 11A
lifetimes in the LJ are around 40% longer than for the IPL
system.

The qualitative differences in numbers of particles par-
ticipating in 11A clusters between the two models may al-
ready be seen in subtle deviations in the partial radial distri-
bution functions (Fig. 5). The AB partial radial distribution
function has a more pronounced first peak for the KA LJ mix-
ture than the IPL reference system [Fig. 5(b)]. Conversely,

FIG. 7. Analysis of the statistics and dynamics of 11A clusters in the KA LJ and KA IPL mixtures for ρ = 1.2 and T = {1.0, 0.75, 0.6, 0.525, 0.5, 0.45}.
(a) 11A population N11A/N and (b) P11A(τ ℓ ≥ t). Inset shows the ratio of the mean lifetimes of 11A clusters in the LJ and IPL systems, ⟨τLJ

ℓ ⟩/⟨τ IPL
ℓ ⟩. Error bars

on the bar charts show plus and minus two standard deviations from the mean.
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the B particles in the KA LJ model appear to have a lower
affinity for bonds with other B-particles compared to the IPL
counter part [lower first peak in Fig. 5(c)]. Both these devi-
ations are consistent with a larger number of 11A clusters in
the KA LJ model, as 11A clusters contain a central B-particle
surrounded by large numbers of A-species and is a stable lo-
cal arrangement of the particles.27 Once more, this shows that
pair correlation functions are too blunt a tool resolve poten-
tially important signatures of local structure and dynamics,
whose correct interpretation is possible only once it has been
picked up through an analysis of locally preferred structures.

IV. DISCUSSION

These results raise a number of questions about the
relationship between local structuring and glassy behavior.
The bicapped square antiprism 11A cluster has been corre-
lated with the non-Arrhenius dynamical behavior in the KA
system.27, 30 The non-perturbative effect of attractions on the
viscous behavior between the KA LJ and KA-WCA model
was previously rationalized by differences in higher-order
structural correlations between the two systems.31 However
here we have shown that the repulsive IPL system, which
matches the static and dynamic pair-correlations of the KA
LJ system, displays markedly different behavior in terms
of the static numbers and persistence of 11A clusters. The
11A cluster was suggested to be a proxy for higher-order
structural correlations that may be necessary for inclusion
in theories of the glass transition in order that the predic-
tions of the relaxation times are accurate for both the KA
LJ and KA-WCA models.23, 31 11A clusters have furthermore
been identified with dynamically slow regions,27 a structural-
dynamical phase transition in the KA system,32 and in ultra-
stable glasses prepared vapor deposition.33

Here we find two similar models – KA LJ and KA IPL –
where the composition, interactions, pair-structure, fragility,
and relaxation times are quantitatively similar, yet the 11A
population (the proxy for higher-order structural correlations)
shows considerable deviations. This emphasizes that low-
order correlations do not fully describe glassy behavior. Here,
although two-point temporal and spatial correlation functions
are very similar between the two systems, the four-point dy-
namic susceptibility χ4(t) does show a tantalizing distinction
at the lowest temperatures studied [Fig. 6(b)]. In the popula-
tion and lifetime of 11A clusters, we propose a simple statis-
tical measure that permits detection of qualitative differences
between the two models. Not only is the higher-order struc-
ture different between these two models [Fig. 7(a)] but we
have revealed a discrepancy in the 11A lifetime at all temper-
atures in Fig. 7(b). This shows that local relaxation behavior
is different between the two models.

We offer the following explanations for the discrepancies
we find. Given that other glass formers, such as the Wahn-
ström binary Lennard-Jones model26 and hard spheres,44 have
been shown to exhibit other locally favored structures, it is
possible that the locally favored structure of the IPL might
be another type of cluster with similar prevalence and life-
time to the 11A clusters in the KA LJ mixture. Indeed, the
discrepancy in the dynamic susceptibility χ4(t) [Fig. 6(b)]

could be interpreted that, if more particles are involved in
dynamically slow regions in the KA IPL mixture, then a
structural motif other than 11A should play a role. Now the
topology of the ground-state cluster is strongly sensitive to in-
teraction range.45 Here the power of the IPL potential (15.48),
is rather higher that the 6-12 of the Lennard-Jones potential,
so a change in locally favored structure is entirely possible—
even in the case that the pair structure and dynamics are sim-
ilar. Previously, we found that equilibrium liquids with inter-
actions of differing range, mapped to one another, showed
a strong change in the population of TCC clusters.46 If in-
deed the IPL has another locally favored structure, it would
indicate that both two-point structure matching as the WCA
approach2, 23 and two-point matching of structure and dynam-
ics in the case of strongly correlating liquids24 are insufficient
to resolve detailed structure.

Another possibility to explain the differences we observe
in the 11A populations is that the mapping between the IPL
and full KA LJ may break down at lower temperatures, and
that we are starting to see signs of this for our lower tempera-
tures. Ultimately breakdown is unavoidable, as the correlation
coefficient for U − W fluctuations decreases linearly with 1/T
to a good approximation [Fig. 2(a)] and eventually KA LJ will
no longer be strongly correlating.21

Although we find differences in higher-order correla-
tions of structure and dynamics in terms of 11A clusters be-
tween the full Lennard-Jones system and the IPL reference
model, others have found better agreement using different
measures for higher-order correlations. In particular, Hocky
et al. measured “point-to-set” correlation lengths down to
T = 0.55 and found good agreement between the two
systems.47 Recently, a different length scale extracted from
the crossover where the lowest eigenvalue of the Hessian ma-
trix has been shown to be sensitive to disorder, is identical to
the point-to-set length up to a rescaling factor.48, 49 The sec-
ond length scale is more readily accessible at lower tempera-
tures than the point-to-set length, and the agreement between
the two systems holds down to T = 0.43. Unlike the TCC
we use, these approaches are “order-agnostic,” and insensitive
to a particular structure. Thus, an identical structural length
scale in these systems is entirely consistent with our sugges-
tion that another structural motif apart from the 11A bicapped
square antiprism might play a role in the KA IPL mixture,
given that relative scarcity of 11A. Moreover, we have found
the same static length in the KA LJ mixture using the TCC27

as that found using the order-agnostic approaches.47–49 The
differences we have found underline the ability of the TCC
to identify particular structural motifs. Thus, comparison of
the Lennard-Jones and IPL systems presents the opportunity
to study the strengths and weaknesses of various higher-order
correlations that are proposed to be of importance for glassy
dynamics.

V. CONCLUSIONS

Here we have considered the behavior of structural cor-
relations in a strongly correlating liquid and compared them
to its perfectly correlating inverse power law reference sys-
tem. We demonstrated with measurement of the statistics and
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dynamics of bicapped square antiprism 11A clusters along
isomorphs of the Kob-Andersen Lennard-Jones mixture that
these higher-order structural and dynamical correlations show
very much larger deviations along the Lennard-Jones iso-
morphs than do two-body correlations. This result is at odds
with the invariance of structure in reduced units predicted by
the theory of isomorphs. The size of the deviations in the
higher-order structural correlation functions between isomor-
phic state points increases as the coefficient of correlation R
decreases on cooling.

The temperature behavior of 11A clusters in the KA LJ
model was compared with its IPL reference potential. Devi-
ations of up to 80% were found in both the fraction of par-
ticles participating in 11A clusters and the lifetime of 11A
clusters, indicating that differences in the higher-order struc-
tural and dynamic correlations do not necessarily translate to
differences in relaxation times. It remains an open question as
to the importance of 11A clusters in determining the glassy
behavior of the KA IPL model. In particular, we suggest that
because of the sensitivity of higher-order structure to inter-
action range, other local structures may play a role in the
IPL reference system, given that it has a shorter range than
the LJ model. To settle some of the issues raised, it would
be necessary to perform a more detailed study of the behav-
ior of higher-order structural correlation functions in the KA
IPL mixture. It would also be beneficial to consider the lower
temperature behavior of the KA LJ model and its IPL counter-
part to understand how the viscous dynamics develop in each
case.
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