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We use a newly-developed method to identify local structural motifs in a popular model glassformer, the Kob-Andersen binary
Lennard-Jones mixture. By measuring the lifetimes of a zoo of clusters, we f nd that 11-membered bicapped square antiprisms,
denoted as 11A, have longer lifetimes on average than other structures considered. Other long-lived clusters are similar in
structure to the 11A cluster. These clusters group into ramif ed networks that are correlated with slow particles and act to retard
the motion of neighbouring particles. The structural lengthscale associated with these networks does not grow as fast as the
dynamical lengthscale ξ4 as the system is cooled, in the range of temperatures our molecular dynamics simulations access. Thus
we f nd a strong, but indirect, correlation between static structural ordering and slow dynamics.

1 Introduction

The nature of the rapid increase in viscosity as liquids are
cooled toward the glass transition is the subject of many the-
oretical approaches, however there is no consensus on its
fundamental mechanism1–4. One plausible scenario is the
emergence of self-induced memory effects upon supercool-
ing of liquids, which causes slow dynamics5. However the
recent discovery of dynamic heterogeneities, i.e., spatial het-
erogeneities in the relaxation dynamics that emerge on super-
cooling6–9, is suggestive of the importance of a growing dy-
namic length scale in the slowing down approaching the glass
transition.
In addition to these dynamical phenomenona, the idea of a

structural change leading to vitrif cation has a long history10.
Sir Charles Frank suggested that upon supercooling liquids
would form polyhedral motifs such as icosahedra that do not
f ll space. A related approach, geometric frustration11, sug-
gests that the glass transition can be thought of as a mani-
festation of a crystallisation-like transition that would occur
in curved space (where the structural motifs tessellate12), but
that growth of the “crystal nuclei” of polyhedral motifs is frus-
trated in Euclidean space. Another approach based on frustra-
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tion against crystallization (due to random disorder effects or
competing orderings)13,14 addresses the origin of slow dynam-
ics and the physical factors controlling glass-forming ability
within the same framework.
It has become clear that a range of glass formers exhibit

a change in structure upon the emergence of slow dynam-
ics15,16, and it is debated as to whether there exists a static
lengthscale that underlies the growing lengthscale for the dy-
namical correlations. Broadly speaking two types of structure
have been identif ed: spatially extendable crystal-like ordering
15,17–19, and non-extendable polyhedral ordering 20–28. For the
former it has been suggested that critical-like f uctuations of
crystalline order are the origin of dynamic heterogeneities in
certain classes of supercooled liquid17. The latter concerns
particles organised into polyhedra that cannot tile Euclidean
space due to geometrical constraints10,11. Instead they form
ramif ed structures with a fractal dimension that is less that the
dimensionality of the system, i.e. non-extendable ordering.
Some metallic glasses have been shown to exhibit this second
type of ordering29,30. The exact relationship of the polyhedral
order to the dynamic heterogeneities is unclear, however mea-
surements have shown that the polyhedral domains are slow to
relax16. Although the two types of orderings have a different
nature, we note that both are induced to lower the free energy
locally in the situation where its global minimization (crys-
tallization) is prohibited14. In relation to this, we note that
even polyhedral ordering often has some connection to crys-
talline order, e.g., for example icosahedra in quasicrystal ap-
proximants26. Furthermore, even in the case where extendable
order dominates slow dynamics, non-extendable polyhedral
order competes with extendable crystal-like order in systems
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such as 2D spin liquids15 and polydisperse hard spheres19.
One of the main diff culties with identifying structural cor-

relations in supercooled liquids is that it is not known a pri-
ori which (if any) type of static order is important for the dy-
namic slowdown. Frequently studies have employed structure
detection methods, such as Voronoi face analysis31, common
neighbour analysis32, bond orientational order analysis33, or
the topological cluster classif cation employed here34–36 that
search for predef ned types of structural “motif” and see how
the numbers change as a function of temperature20,22,28,35,37.
However recently a number of “order-agnostic” schemes have
been devised to identify structural correlations without f rst
having to def ne what structures will be searched for38–44. In
relation to this, it has recently been pointed out that for ac-
cessing such hidden structural ordering in apparently random
structures it is crucial to focus onmany-body correlations45,46.
To strengthen the link between structure and glassy be-

haviour three types of evidence have been presented. Firstly,
many-body structural correlation functions have been pre-
sented that clearly show structural changes occur on super-
cooling towards the glass transition16,26,46. Secondly, dy-
namically slow regions have been correlated with different
types of local ordering16,24. Thirdly, the presence of struc-
tural and dynamic length scales that grow similarly has been
sought15,17,18. This is motivated by strong evidence that, for
suff cient cooling (which leads to relaxation timescales that
may or may not be accessible to computer simulations as we
employ here), an increasing dynamical lengthscale necessi-
tates an increasing lower bound to a structural lengthscale47.
The case of growing structural and dynamic length scales is
controversial. One of us has identif ed a direct correspon-
dence between the growing dynamical and structural length-
scales in polydisperse systems displaying crystal-like order-
ing17,18,45, while others have claimed that structural length-
scales are decorrelated from the dynamic lengthscales and
only grow weakly on cooling48–50.
Local structural ordering has yet to be found in some glass-

forming systems. For these systems no one-to-one correspon-
dence between an order-agnostic structural lengthscale and the
dynamical lengthscale has been found41,44,48,51, but static per-
turbation analysis has suggested a growing structural length-
scale52.
The Kob-Andersen binary Lennard-Jones system53 of inter-

est here is known to display polyhedral ordering16. In this sys-
tem, weakly growing structural lengthscales have been iden-
tif ed by the order-agnostic “point-to-set” analysis43, while
other approaches using static perturbation of inherent struc-
tures39 and f nite size scaling54 f nd a stronger increase in
static lengthscales. The polyhedral ordering in the Kob-
Andersen mixture53, take the form of the bicapped square an-
tiprism [“11A” in the topological cluster classif cation (TCC)
nomenclature34–36,55 owing to its original identif cation as

minimum energy cluster of the Morse potential56,57]. This
structure has been linked to slow dynamics16 and frustrates
crystallisation, which in the KAmixture occurs spontaneously
by phase separation into two face-centred cubic lattices58. We
note that crystals based on 11A could in principle coexist with
other structures [the stoichimetry of the 11A crystal with a
small particle in the centre (see Section 4.3 and Fig. 5) is
not compatible with the KA mixture59]. Another possibility
is four-fold symmetric crystals which have been predicted as
low-lying energy minima for the KA mixture60. An order pa-
rameter associated with the formation of 11A clusters has been
shown to control the dynamical phase transition in trajectory-
space, a hallmark of dynamical facilitation theory for the glass
transition61, indicating that the transition has both structural
and dynamical character62. Here we study the spatial correla-
tions between the domains of 11A in the supercooled liquid.
We consider the lifetimes of a multitude of structures in the

supercooled liquid using the TCC algorithm. We detail our
simulation protocol in section 2, and brief y review the KA
model’s dynamical behaviour in section 3. We use the TCC
to identify any structural changes that occur in these mixtures
on cooling towards the glass transition in section 4. We then
study in section 4.2 the lifetimes of the clusters that are found
at deeply supercooled state points in order to gauge which
structures are likely candidates to be associated with slow do-
mains of dynamic heterogeneities. Finally we analyse how
correlation lengths for the domains of structured particles are
related to the growing dynamic lengthscale in section 5 before
concluding.

2 Model and simulation details

The Kob-Andersen (KA) binary mixture is composed of 80%
large (A) and 20% small (B) particles of the same mass
m53. The nonadditive Lennard-Jones interactions between
each species, and the cross interaction, are given by σAA = σ,
σAB = 0.8σ, σBB = 0.88σ, εAA = ε, εAB = 1.5ε, and εBB = 0.5ε.
The results are quoted in reduced units with respect to the A
particles, i.e. we measure length in units of σ, energy in units
of ε, time in units of

√

mσ2/ε, and set Boltzmann’s constant
kB to unity. The interactions are truncated and smoothed us-
ing the Stoddard-Fordmethod63. The truncation lengths are in
proportion to the interaction lengths53, i.e. rAA

tr = 2.5, rAB
tr =

2.0 and rBB
tr = 2.2. The simulations consist of N = 10976

particles in 3D with periodic boundary conditions such that
NA = 8781 and density ρ = 1.2. The α-relaxation time τA

α for
each state point is def ned by f tting the Kohlrausch-Williams-
Watts stretched exponential to the decay of the intermediate
scattering function (ISF) of the A-type particles.
Equilibrated samples at each temperature were prepared by

simulating for 100τA
α in the canonical NVT -ensemble using

the Nosé-Poincaré thermostat with coupling parameter 1.064.
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Fig. 1 Increase in the alpha relaxation time, τA
α, on cooling. The

data are f tted with a hybrid Arrhenius-VFT f t (solid lines). The
dotted lines indicate the relaxation times predicted by the high-T
Arrhenius f t. Orange dashed line indicates the crossover from
Arrhenius to super-Arrhenius (T∗).

The thermostat was switched off, then further equilibration
was performed in the microcanonical NVE-ensemble using
the velocity Verlet algorithm for 1000τA

α. On completion of
the equilibration process, trajectories of length 300τA

α were
sampled for analysis. Colder state points were obtained in a
step-wise fashion by quenching instantaneously from an equi-
librated conf guration of the previous higher temperature state
point. The stability of the deep quenches was checked by en-
suring there was no time evolution in the ISF, the partial ra-
dial distribution functions gAA(r), gAB(r) and gBB(r), or the
number of clusters detected by the TCC algorithm across the
trajectories. Crystallisation was not seen in any of the simula-
tions.

3 Dynamical Behaviour

In Fig. 1 the relaxation time τA
α as a function of inverse temper-

ature is plotted. For the equilibrium liquid state points at high
temperatures, the relaxation times are well f tted by an Arrhe-
nius function. As the temperature is lowered a cross-over in
the dynamical behaviour occurs and the relaxation times in-
crease faster than predicted by the Arrhenius equation2,65,66.
We f t the two regimes for the relaxation time delimited by

an onset temperature for slow dynamics T ∗ 16. For T > T ∗

an Arrhenius form is used, while for lower temperatures the

Vogel-Fulcher-Tammann (VFT) equation is f tted67–69.

τA
α =

{

τ∞ exp(E∞/T ) for T ≥ T ∗,

τ′∞ exp
(

DT0
T−T0

)

for T < T ∗.
(1)

We set T ∗ = 1.00 and f t the Arrhenius equation f nding τ∞ =
0.0693 and E∞ = 2.91. For the VFT f t the fragility parameter
is found to be D = 7.48, the VFT temperature is T0 = 0.250
and τ′∞ is set to ensure continuity of the f t at T ∗. While it is
possible to use other f tting forms70,71, and although VFT may
be physically reasonable1, there remains no clear consensus
as to which form best describes data such as those plotted in
Fig. 172. Nonetheless, following our previous study28, here
we choose this f tting procedure to ref ect the onset of slow
dynamics (super-Arrhenius) for T < 12,66 and, over the range
of temperatures we consider, f nd good agreement with the
assumption of a crossover to a VFT regime.

4 Structural analysis

4.1 Fraction of particles participating within clusters

We analyse how the particles in the supercooled liquids are
structured using the topological cluster classif cation algo-
rithm. This algorithm identif es a number of local structures
as shown in Fig. 2, including those which are the mini-
mum energy clusters for m = 5 to 13 KA particles in iso-
lation. The f rst stage of the TCC algorithm is to identify
the bonds between neighbouring particles. The bonds are
detected using a modif ed Voronoi method with a maximum
bond length cut-off of rc = 2.0 for all types of interaction (AA,
AB and BB)34,36,55. A parameter which controls identif cation
of four- as opposed to three-membered rings fc is set to unity
thus yielding the direct neighbours of the standard Voronoi
method36,55,73–75.
In Fig. 3 we plot the fraction of particles detected within

each type of cluster, NC/N. The onset temperature for slow
dynamics is indicated by the orange dotted line on each of
the plots. It is clear from these order parameters that the liq-
uid sees continuous changes in local structure as it is cooled.
The majority of clusters see an increase in their numbers upon
cooling. All of the particles are identif ed within certain sim-
ple structures such as the 5A triangular bipyramid irrespective
of temperature, while other more complicated clusters, such
are 10K, 11B and HCP, are almost never seen.
Given the variety and range of structural changes that occur,

it is not clear a prioriwhich of the structures, if any, are impor-
tant for the formation of dynamic heterogeneities on cooling.
It should not be assumed that just because structural changes
occur within the supercooled regime that they are responsi-
ble for the formation of dynamic heterogeneities, as structural
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Fig. 2 Clusters detected by the topological cluster classif cation. Highlighted are minimum energy clusters for the Kob-Andersen system. The
colours of the particles and the bonds are pertinent to the detection method of the clusters36,55.
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Fig. 3 The fraction of particles participating in each cluster type for the KA mixture. The dotted orange lines mark the onset temperature of
slow dynamics T ∗. (a) Clusters 5A to 8K, (b) 9A to 11A, (c) 11B to 12D, (d) 12E to 13K and the crystal clusters.
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changes also occur in the Arrhenius regime which is not char-
acterised by glassy behaviour. The numbers of particles within
11A, 11W, 12B, 12E and 12K clusters show the largest relative
increases in the super-Arrhenius regime. Moreover, the rate of
increase in these clusters grows upon further supercooling.
We also f nd clusters in which almost all particles partic-

ipate, while other clusters are only seen in trace quantities.
In general the trend for clusters where NC/N changes signif -
cantly on cooling is for it to increase monotonically. However
this is not always the case, as seen for the numbers of particles
within 9A and 9X clusters which decrease on cooling. The
question remains as to how to determine the contribution of
the different structures to the glassy behaviour and dynamical
heterogeneities of the supercooled liquid.

4.2 Cluster lifetime distributions

In order to identify which clusters might be relevant to the
slow dynamics, we employ the dynamic topological cluster
classif cation algorithm28,36 to measure the lifetimes of the
different TCC clusters at the lowest temperature state point.
A lifetime τℓ is assigned to each “instance” of a cluster, where
an instance is def ned by the unique indices of the particles
within the cluster and the type of TCC cluster. Each instance
cluster occurs between two frames in the trajectory and the
lifetime is the time difference between these frames. Any pe-
riods where the instance is not detected by the TCC algorithm
are shorter than τA

α in length, and no subset of the particles
becomes un-bonded from the others during the lifetime of the
instance.
The measurement of lifetimes for all the instances of clus-

ters in these N = 10976 simulations is intensive in terms of
the quantity of memory required to store the instances, and
the number of searches through the memory required by the
algorithm each time an instance of a cluster is found to see if
it existed earlier in the trajectory. Therefore we do not mea-
sure lifetimes for the clusters where NC/N > 0.8, since the
vast majority of particles are found within such clusters and
it is not immediately clear how dynamic heterogeneities could
be related to structures that are pervasive throughout the whole
liquid.
In Fig. 4 we plot the lifetime autocorrelation function

P(τℓ ≥ t) for T = 0.498. Figure 4 clearly shows that the most
persistent or the longest lived of the different types of clus-
ters are the 11A bicapped square antiprisms. All other clus-
ters display lifetime autocorrelation functions that decay more
quickly than 11A. The long-time tail of the 11A autocorre-
lation function indicates that some of these clusters preserve
their local structure on timescales far longer than τA

α. As we
shall see below, this effect is enhanced when the 11A group
into domains.
The two next-slowest decaying clusters are 11W and 12K.

!
"#
$%
!
"&
'

&(##
)

$%&'()*

Fig. 4 Lifetime autocorrelation functions for the clusters P(τℓ ≥ t)
for the lowest temperature state point T = 0.498.

12K is a KA minimum energy cluster, formed by bonding an
additional particle to 11A. There is a high degree of overlap
between the 11W clusters and the 11A clusters as their bond-
ing is similar, and only small f uctuations are required for an
11A to be reclassif ed as an 11W. However the faster-decaying
clusters also contain KA minimum energy clusters, for exam-
ple 13K and 10K. Moreover the lifetimes of all cluster types
hold no simple relationship to their size and frequency of oc-
currence. For example the n = 11 particle 11F cluster is much
more numerous than 11A, yet displays far quicker decay of
P(τℓ ≥ t). There is also no monotonic trend in the lifetime of
the ground state clusters with the cluster size, as the 10K and
13K decay faster than the 12K and 11A. These results clearly
demonstrate that the average lifetime of each type of cluster is
a property of the local ordering of the particles rather than the
size of the cluster or its pervasiveness.
The fast initial drops of P(τℓ ≥ t) ref ect the existence of

large numbers of clusters with lifetimes τℓ ≪ τA
α. The life-

times of these clusters are comparable to the timescale for
beta-relaxation where the particles f uctuate within their cage
of neighbours. It could be argued that these clusters arise spu-
riously due to the microscopic f uctuations within the cage,
and that the short-lived clusters are not representative of the
actual liquid structure. However almost no 11A are found at
higher temperatures, cf. Fig. 3(b), where microscopic f uctu-
ations in the beta-regime also occur. We have not yet found a
way to distinguish between the short and long-lived 11A struc-
turally, so we conclude that the measured distribution of 11A
lifetimes, which includes short-lived clusters, is representa-
tive of the true lifetime distribution. However, given the struc-
tural similarity of 11A and 11W, small f uctuations leading
to reclassif cation could contribute to the drop at short times.
We will see below that as 11A overlap, one particle may be
a member of multiple clusters and that the majority of parti-
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Fig. 5 Composition of the 11A clusters at T = 0.498. Almost all
11A have a small B-particle at the centre. mA is the number of
A-species in the shell of the cluster. The height of the bars show the
relative proportions that each of the compositions occurs.

cles found in short-lived 11A also participate in longer-lived
11A. In other words short- and long-lived 11A mainly lie in
the same regions of the liquid.
Another interpretation for the initial drop in P(τℓ > t) of the

clusters is that our intuition that there is constant local struc-
ture in the beta-regime, which then relaxes on the timescale
of the alpha-regime, is incorrect. It may be the case that mi-
croscopic ballistic and “cage-rattling” motions are enough to
reorder local structures without relying on the “cage-hopping”
motions of the alpha-regime. It has been seen in previous
studies that deeply supercooled liquids can crystallise on a
timescale before the diffusive range of the mean squared dis-
placement is reached, and occurs with most particles moving
by less than one diameter76–79. Those results demonstrate that
signif cant changes in local structure (i.e. liquid-like to crys-
talline) are possible with only small movements of the parti-
cles, which could explain the initial drops of P(τℓ ≥ t) that
occur on a timescale ≃ 0.1τA

α.

4.3 Composition and dynamics of particles in long-lived
clusters

The structural analysis above was performed by treating all
particles identically with the TCC algorithm. Here we exam-
ine the composition of the 11A bicapped square antiprisms in
terms of A- and B-species. The 11A cluster consists of a cen-
tral particle surrounded by 10 outer (or shell) particles. We
f nd that the central particle is a B-specie in > 99% of all in-
stances of 11A clusters. This is a different composition than
the crystal structures found to be low-lying energy minima for
the KA mixture60, and may be related to the stoichiometry of
the system. Thus the 11A we f nd are unrelated to any under-
lying crystal.

In Fig. 5 we plot the compositions of the shell particles of
the 11A clusters. The majority of 11A clusters have mA = 10
A-species in the shell of the cluster. We note that this arrange-
ment maximises the number of AB bonds for the central B-
particle, which is energetically favourable for the central B-
particle with the KA Lennard-Jones interactions.
In Fig. 6 we examine how the dynamics of the 11A clus-

ters translates into the dynamics of individual particles. We
show in Fig. 6(a) that the number of particles within 11A clus-
ters as a function of the cluster lifetime. Although there is a
fast initial drop in the lifetime autocorrelation function of 11A
clusters on the beta-relaxation timescale (Fig. 4, solid pur-
ple line), as the 11A overlap there remains a signif cant frac-
tion of the particles these clusters with lifetimes comparable
to the dynamic heterogeneities ≈ τA

α. The difference between
N11A(τℓ ≥ 0.1τA

α)/N and N11A(τℓ ≥ 0)/N indicates that only
6% of the particles are members of 11A with τℓ < 0.1τA

α and
not a member of an 11A with a longer lifetime as well.
Figure 6(b) shows the mean squared displacement (MSD)

of the particles identif ed initially within 11A clusters
(coloured lines) and compares this to the system-wide MSD
(black line). The MSD is def ned as the ensemble average
〈δr2(t)〉 = 〈|ri(t + t0)− ri(t0)|2〉 for the subset of particles of
interest (indexed by i). All of the particles within 11A relax
more slowly than the system-wide average (black line), and
the time they take to attain diffusive motion increases as the
lifetime of the 11A in which they participate in at t0 increases.
In other words the longer the lifetime of the 11A cluster, the
slower the particles become. Since some 11A last for very
long times [Fig. 4], it is expected that these particles may ex-
hibit very low mobilities as they maintain some of their near-
est neighbours throughout (e.g. the central particle in an 11A
cluster will always have the same shell particles as its near-
est neighbours). For the longest lived 11A (blue lines) there
appears to be a super-diffusive regime after the initial sub-
diffusive regime, indicating that the particles in these clusters
may be hopping out of their cage of neighbours as the 11A
structure relaxes.

4.4 Analysis of structured domains

On cooling, the number of 11A clusters in the KA mixture
increases. At high temperatures the clusters are generally iso-
lated from one another [Fig. 7(a)]. As the temperature is low-
ered and the number of clusters increases, domains of clus-
tered particles form. We now analyse the character of these
domains of clustered particles and determine the effect the do-
mains have on individual particle dynamics.
The domains of 11A that form on cooling in the KA mix-

ture are shown in Fig. 7(a)-(c). At high temperature 11A are
predominantly isolated [Fig. 7(a)]. Upon cooling, the 11A
overlap and join together [Fig. 7(b)] to form (transient) net-
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Fig. 6 Dynamics of the particles within 11A clusters in the KA mixture. (a) The fraction of particles participating in 11A clusters with lifetime
τℓ > t. N11A(τℓ ≥ 0)/N = 0.24. (b) The mean squared displacement of particles identif ed initially within 11A polyhedra of various lifetimes.
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Fig. 7 Analysis of the domains of 11A clusters. (a)-(c) Domains form on cooling from high to low temperature (slices through 3D simulation
box). Particles in 11A clusters are shown full size in red, other particles are blue dots. (d) The radius of gyration RG of the domains versus the
number of particles in the domain n for T = 0.498. RG is well f tted by n0.48 indicating the domains have a fractal dimension df ≃ 2. (e) The
mean lifetime of 11A clusters τ̄ℓ versus the domain size n. (f) 11A domains affect the motion of neighbouring particles. The MSD 〈δr2(τh)〉
of non-11A particles as a function of distance from 11A domains d (solid line). The dotted line is the MSD over τh of all particles not in 11A
clusters and independent of the distance from an 11A domain (d).
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works at low temperatures [Fig. 7(c)].
In order to investigate the structure of the domains, we cal-

culate their radius of gyration,

RG =
1
2n2 ∑

i, j
(ri − r j)

2, (2)

where n is the number of particles in the domain and the dou-
ble sum extends over all pairs of particles in the domain. For
conf gurations where the domains of 11A percolate through-
out the simulation box RG cannot be def ned. These conf gura-
tions are rare at T = 0.498 and are excluded from the analysis.
The consequences of percolating 11A domains are discussed
further below.
The radius of gyration shows a power law growth in the size

of the domain n with an exponent of 0.48 [Fig. 7(d)]. In other
words the domains have a fractal dimension df ≃ 2, indicat-
ing that they are not space-f lling. The individual 11A have
enhanced stability as the size of the 11A domains grow [Fig.
7(e)]. The time τ̄ℓ is the mean lifetime of 11A clusters consti-
tuting a domain of size n in a conf guration. For T = 0.498 the
general trend is that the mean 11A lifetime increases with the
size of the 11A domains. Fig. 7(e) indicates that there is par-
ticularly stable arrangement of two overlapping 11A clusters
(n ≃ 16) relative to domains from similar size. The mean life-
time τ̄ℓ doubles between isolated 11A (n = 11) and extended
domains (n ≈ 1000).
We now consider the effect the domains have on the remain-

der of the system. In Fig. 7(f), we plot the MSD of the parti-
cles not in 11A domains 〈δr2(τh)〉 against the distance d from
the nearest 11A particle at time t = t0. The time τh ≃ τA

α is
the time of the maximum in the dynamic susceptibility χ4(t)
def ned below80. For distances d < 0.96 the non-11A par-
ticles are mainly B-species due to the nonadditive nature of
the KA Lennard-Jones interactions. These particles are more
mobile than the majority A-species, independent of d, due to
their smaller size. The number of particles with d < 0.96 of a
11A domain is around 10% of the system, i.e. half of all the
B-species.
Moving further away from the 11A domains, there is then

a region of particles with d ≃ 1 with reduced mobility com-
pared to the average for non-11A particles [dotted line in Fig.
7(f)]. Around 37% of the particles are found in this region.
Subsequent neighbours of the 11A domains for d > 1.26 have
increased mobility relative to the average. Therefore, exclud-
ing the minority B-species, the f rst nearest neighbours of the
domains have suppressed mobility compared to the average,
indicating coupling between the structured domains of 11A
clusters and the dynamics of the neighbouring particles. Cor-
respondingly the second and third shells of neighbours to the
11A domains have higher mobility compared to the average,
indicating a hierarchy of spatial dynamics related to the do-
mains of 11A clusters.

!"
#
$

!"#

"#%##$
%$%&'

Fig. 8 Comparison of static and dynamic correlation lengths.
Structural ξRG (squares) and ξSC (crosses), and dynamical ξ4
(circles) correlation lengths. ξ4 is f tted with a power law (solid
line), which diverges at a value TC = 0.47.

5 Correlation lengths

5.1 Dynamic correlation lengths

Finally we consider whether the structured domains of parti-
cles are related to the increasing dynamic correlation lengths
in supercooled liquids. In order to do this, we calculate the
dynamic correlation length ξ4, following Lačević et al.80. De-
tails of this procedure can be found elsewhere28,80,81. ξ4 has
been previously calculated for the Kob-Andersen model and
our values correspond closely to those in the literature81. The
dynamical correlation length ξ4 is obtained by analogy to crit-
ical phenomena80. A (four-point) dynamical susceptibility is
calculated as

χ4(t) =
V

N2kBT
[〈Q(t)2〉− 〈Q(t)〉2], (3)

where

Q(t) =
1
N

N

∑
j=1

N

∑
l=1

w(|r j(t + t0)− rl(t0)|). (4)

The overlap function w(|r j(t + t0)− rl(t0)|) is def ned to be
unity if |r j(t + t0)− rl(t0)| ≤ a, 0 otherwise, where a = 0.3.
The dynamic susceptibility χ4(t) exhibits a peak at t = τh,
which corresponds to the timescale of maximal correlation in
the dynamics of the particles. We then construct the four-point
dynamic structure factor S4(k, t):

S4(k, t) =
1

Nρ
〈∑

jl

exp[−ik · rl(t0)]w(|r j(t + t0)− rl(t0)|)

× ∑
mn
exp[ik · rn(t0)]w(|rm(t + t0)− rn(t0)|)〉,
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where j, l, m, n are particle indices and k is the wavevector.
For time τh, the angularly averaged version is S4(k,τh). The
dynamic correlation length ξ4 is then calculated by f tting the
Ornstein-Zernike (OZ) function to S4(k,τh), as if the system
were exhibiting critical-like spatio-temporal density f uctua-
tions,

S4(k,τh) =
S4(0,τh)

(1+(kξ4(τh))2)
, (5)

to S4(k,τh) for k < 280. The resulting ξ4 are plotted in Fig. 8.
We carried out an unconstrained f t to the ξ4 data, accord-

ing to ξ4(T ) = ξ04(T − TC)−ν. The line is plotted in Fig. 8.
We f nd the “critical exponent” is ν = 0.588± 0.02, the “crit-
ical temperature” is TC = 0.471± 0.002 and the prefactor is
ξ04 = 0.59± 0.02. Under the caveat that obtaining ξ4 from
f tting S4 in limited size simulations is notoriously problem-
atic81,82 and thus any numerical values should be treated with
caution, we observe that the value of TC is not hugely differ-
ent to the glass transition temperature found by f tting Mode-
Coupling theory to this system, around 0.43553,83. We also
note that ν = 0.588 lies between mean f eld (ν = 0.5) and 3D
Ising (ν = 0.63) criticality. Here it is worth noting that Onuki
and his coworkers pointed out that the dynamical correlation
length estimated from four-point density correlations may se-
riously be affected by thermal low-frequency vibration modes,
which may lead to a strong system-size dependence84. They
also showed that a bond-breakage correlation length is free
from these vibrational modes, and thus a suitable measure of
dynamical coherence.

5.2 Static correlation lengths

We consider two static correlation lengths for the domains
of particles in 11A clusters. The f rst method allows for di-
rect comparison with the dynamic lengthscale ξ4. We def ne
a structure factor restricted to the particles identif ed within
11A:

S11A(k) =
1

Nρ
〈

N11A

∑
j=1

N11A

∑
l=1

exp[−ik · r j(t0)]exp[ik · rl(t0)]〉, (6)

where N11A is the number of particles in 11A clusters. We
then f t the Ornstein-Zernike equation (Eq. 5) to the low-k be-
haviour of the angularly-averaged S11A(k) in order to extract
a structural correlation length ξS11A. This is plotted in Fig.
8. This procedure is akin to the calculation of the dynamic
lengthscale ξ4: f rst a structure factor is calculated from a se-
lected fraction of the particles (either immobile or structured),
and the Ornstein-Zernike expression used to extract a correla-
tion length.
The second lengthscale we consider for the structured par-

ticles is derived from the radius of gyration of the domains of

clusters. We def ne

ξRG = R11A
G (〈n〉/m)1/df , (7)

where R11A
G is the radius of gyration of a single cluster, 〈n〉

is the ensemble average of the domain size, m is the num-
ber of particles in the cluster, and 1/df is the exponent of the
power law f tted to RG versus n. This correlation length does
not probe the correlations between the domains, as per ξS11A,
rather it characterises the growth in size of the domains on
cooling until a percolation transition is reached.
The temperature behaviour of the different correlation

lengths is shown in Fig. 8. All three correlation lengths in-
crease on cooling, however the manner in which each of the
lengths increases is quite different. The main result is that the
growth in the dynamic correlation length ξ4 is not matched by
the growth in the structural correlation length ξS11A. Thus we
do not f nd one-to-one correspondence between the behaviour
of structural and dynamic correlation lengths.

5.3 Discussion

The fact that different behaviour between the dynamic and
static lengths is found is in agreement with some recent stud-
ies on 2D and 3D systems43,44,48–50, however we note that a
one-to-one correspondence in the growth in a lengthscale re-
lating to static crystalline order and the dynamic correlation
length for polydisperse quasi-hard sphere systems has been
found15,17,18,85.
The structural order we f nd is distinct from the crystalline

structure and is thought to frustrate crystallisation. We note
that in the studies on 3D systems that have found one-to-one
correspondence between the structural and dynamical length-
scales17,85, the relative increase in the static lengthscales go-
ing from state points in the Arrhenius regime to into the su-
percooled regime is no more than a factor of 2. Increases of
comparablemagnitude have been found in studies using point-
to-set measures43, and more indirect methods39,52 rather than
focussing on explicit structures. In Fig. 8 our static length
ξS11A shows an increase of the same order between Arrhe-
nius and supercooled state points, however the increase in
ξ4 is relatively much greater (factor of ≈ 6 or more between
high and low T ). We note a recent 2D study that suggests
one-to-one correspondence in lengthscales for crystalline or-
der and dynamic heterogeneities on quasi-hard spheres breaks
down with the addition of attractions between the particles86.
However, we also note that 3D polydisperse hard-sphere and
Lennard-Jones systems have the same link between the cor-
relation length of crystal-like order and slow dynamics, albeit
over a limited range of correlation length17. These points need
to be clarif ed in the future.
The structured domains form raref ed networks with df ≃ 2.

These networks do not f ll space, whereas it is thought that any
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critical-like nature of the dynamic heterogeneities would im-
ply that the domains have df ≃ 2.587. Therefore geometrically
it appears that the domains of slow and structured particles
may be different, at least at the state points we have accessed.
Moreover the number of particles in the domains is unlikely
to coincide across a range of temperatures, as the N11A for
the structured particles increase monotonically on approach-
ing the glass transition, while the number of particles selected
by Q(t) is relatively constant as a function of temperature.
Here we note that Mosayebi et al.39,52 found behaviour con-

sistent with critical-like static correlations in the same system
as ours, which implies d f ∼ 2.5. This seems to suggest that
11A together with other clusters or kinetically pinned particles
may correspond to their static structures with solid-like nature.
Now the temperature range over which we were able to equi-
librate our simulations is less than that for which Mosayebi et
al.39,52 present data. Indeed over our range of temperature,
the relative increase in static lengthscale they measure is con-
sistent with ours. However, since our d f ∼ 2.0, our f ndings
are not consistent with Ising-like criticality, although critical-
like behaviour at lower temperatures than we have been able
to access cannot be ruled out. We also note that the struc-
tural motifs investigated here are of intrinsically of discrete
nature, whereas the structural measures showing critical-like
behaviours (d f ∼ 2.5), such as bond orientational order14,17
and static structures39,52 have a continuous nature.
The MSD of the 11A particles indicates that there is not

a one-to-one correspondence between the particles selected
in S4 and S11A. The particles selected by w for S4 all have
δr2(τh) ≤ 0.09 strictly (by the def nition of w). However, as
can been seen from the red line in Fig. 6(b), the MSD of
the 11A particles over the same timescale is 〈δr2(τh)〉 ≈ 0.1.
Only the particles in the longest-lived 11A clusters [blue lines
in Fig. 6(b)] have squared displacements over τh comparable
to the immobile particles on which S4 is measured. Thus on
this basis direct correspondence between ξ4 and ξ11A should
not necessarily be expected. We note that this might also be
related to the effects of low-frequency vibrational modes84.
Note χ4 has been shown to exhibit dependence upon system

size for N . 100088. We expect that such effects are reason-
ably small here, and have taken care to only consider tempera-
tures where all our measured lengths are smaller than the sys-
tem size. While system size effects cannot be ruled out, we do
not believe these make a signif cant impact on the conclusions
we draw.
The lengthscale ξRG indicates how the size of the domains

grows on cooling. In our related study on the Wahnström bi-
nary Lennard-Jones glass former28, where the concentration
of clusters was higher, a percolating network of icosahedra
was formed. In a study on the Kob-Andersen model con-
sidered here62, some of us found evidence for an increase in
the population of 11A clusters at lower temperatures than we

have been able to access here. Thus if the 11A clusters perco-
late, this would suggest a diverging structural lengthscale at a
temperature higher than either the VFT or MCT temperatures
(∼ 0.325 and ∼ 0.435 respectively). In any case, percolating
domains of 11A clusters do not imply structural arrest since
each cluster has a f nite lifetime. This scenario contrasts with
colloidal gels where a percolating network of local structures
leads to dynamic arrest35.
We also note that Fig. 7(f) strongly indicates that the effect

of the domains of clustered particles on the surrounding liquid
extends around one particle diameter from the domains. This
shows that the dynamical effect of the structured particles is
hierarchical and not solely limited to the structured domains
themselves. However the correlation lengths we measured
from a structure factor of the domains and their f rst nearest
neighbours was no greater than the lengthscale ξS11A for the
domains themselves.
Thus the question remains as to the most appropriate struc-

tural (and dynamical) correlation length to explain the viscous
slowing down in supercooled liquids, and how order-specif c
correlation lengths, such as ξRG and ξS11A, are related to order-
agnostic structural correlation lengths38–40,44,52,89. We con-
clude this discussion with the following observations.

1. Static correlation lengths have been measured in a vari-
ety of systems. Most seem to grow less strongly than
dynamic correlation lengths in the regime accessible
to computer simulation (and real-space colloid experi-
ments)28,38–40,43,44,52,89. Those that are observed to grow
in a way comparable to the dynamic correlation length
ξ4 are often related to crystalline order15,17,90. Here we
note that a bond orientational order parameter is a contin-
uous variable, whereas structural motifs are discrete by
the def nition. There might also be some effects of low-
frequency vibrational modes on the estimation of the dy-
namical correlation length in our system84. These points
need further investigation.

2. We note that geometric frustration suggests a term in R5

to be included in a classical nucleation theory like equa-
tion, where R is the size of a growing domain of the pre-
ferred structure (11A here)11. This R5 term strongly sup-
presses growth of such domains, consistent with ramif ed
structures as we (and others16,24) f nd. Now the argu-
ments supporting geometric frustration tended to focus
on icosahedra, not 11A bicapped square antiprisms as we
f nd here. However, in our study of theWahnström model
(whose local structural motif is the icosahedron)28, we
found very similar behaviour to that reported here. In any
case, crystals can be formed of 11A, though not for the
80-20 composition of the KA mixture59, and icosahedra
(with the inclusion of Frank-Kasper bonds)26. Assuming
crystallisation is avoided, given the presence of such an
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R5 term, one might enquire as to why growth of polyhe-
dral domains is expected in the f rst place.

3. Apart from ξ4, dynamic correlation lengths have also
been measured by other means41,43. In particular, ev-
idence has been found for non-monotonic behaviour
of such dynamic correlation lengths around the Mode-
Coupling transition41. While ξ4 itself does not exhibit
non-monotonic behaviour as such, there is evidence that
a different scaling is followed for quenches below the
Mode-Coupling transition91. Moreover, that our f t of
ξ4 implies divergence at T = 0.47 suggests that some
other scaling might be found at lower temperatures than
we have accessed. Another way to approach the discrep-
ancy in Fig. 8 is to enquire whether ξ4 is the “right”
dynamical correlation length92. One could even spec-
ulate that dynamical correlations are enhanced around
theMode-Coupling transition (as our results imply, along
with those of Kob et al.41), and that at least the length-
scale does not grow signif cantly at lower temperatures.
This would rationalise the estimates of dynamic correla-
tion lengths close to the molecular glass transition (some
10 orders of magnitude slower in relaxation time than our
simulations are able to access) which suggest correlation
lengths only of a fewmolecular diameters93,94. However,
we should note that there is a possible def ciency of the
standard dynamical correlation length ξ4 84. We point out
that the wavenumber dependence of the transport coeff -
cient, viscosity, is a physically appealing method for es-
timating the intrinsic dynamical correlation length95–97.

6 Summary and conclusions

We have demonstrated that by studying the lifetimes of differ-
ent structural orderings within the Kob-Andersen supercooled
liquid, the relatively stable orderings of particles can be de-
tected unambiguously. This method alleviates some of the dif-
f culties in identifying structural correlations relevant to glassy
behaviour from the temperature dependency of the number
of particles participating in clusters. The most stable clus-
ter found in the Kob-Andersen supercooled liquid is the 11A
bicapped square antiprism. The relaxation of particles within
these clusters proceeds more slowly as the lifetime of the clus-
ter increases. This is consistent with previous work based on
Voronoi polyhedra16.
The long-lived clusters form raref ed domains on cooling

with a fractal dimension df ≃ 2, i.e. the structured domains
are non-space-f lling, at least in the regime we have accessed.
The lifetime of the 11A clusters increases markedly with the
size of the domains of these clusters. The non-11A particles
neighbouring these domains have reduced mobility compared
to particles further from the domains, suggesting a link be-

tween structure and dynamic heterogeneity at this level of de-
tail. In other words, the network of 11A clusters acts to “pin”
its neighbours.
We examined the relationship between the structured do-

mains and the dynamic heterogeneities by considering static
and dynamic correlation lengths of structured/slow particles.
A static correlation length calculated in a like-for-like manner
with the dynamic correlation length was found to growmoder-
ately on cooling, however its increase was outmatched by the
growth in the dynamic correlation length ξ4. The difference in
behaviour of the correlation lengths was rationalised by not-
ing that the structured domains grow in a non-space f lling
manner, and that the correlation between the structured and
slow particles is not perfect. The relationship between the our
static and dynamic correlation lengths, and other lengthscales
for static order, remains an open question, (see sec. 5.3).
Finally we consider a possible direction for future study. It

has been shown recently that an order parameter associated
with the population of 11A clusters can be used to drive a
f rst order transition in an ensemble of trajectories62. The sus-
ceptibility of the transition to the f eld coupled to the struc-
tural order parameter was found to be higher than when bi-
asing with a f eld coupled to the dynamical activity, which
is the usual method that the transition is accessed. Further-
more a recent study by Singh et al. has shown that “ultra-
stable” KA glasses prepared by a vapour deposition technique
have high numbers of clusters equivalent to 11A polyhedra98.
Together these results provide further evidence for a connec-
tion between the atomic level structure, most easily accessed
with high-order structural correlation functions, and the glass
transition. The biasing of f elds coupled to structural order
parameters in trajectory space, and possibly in conf guration
space as well, thus opens up a new route for the preparation
of ultra-stable glassy states98 pertinent to temperatures well
below the Mode-Coupling temperature. The relaxation times
inferred for these states are many orders of magnitude higher
than those which can currently be prepared with conventional
simulations. Study and characterisation of the properties of
these states will shed further light on nature and role of lo-
cal structure in the glass transition. In other words, while Fig.
8 (like much of the recent literature28,39,41,43,44,52) indicates
a decoupling between structural and dynamical lengthscales,
other static and/or dynamical measures might f nally lead to
coupling of structure and dynamics.
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