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Identification of structure in condensed matter with the topological
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We describe the topological cluster classification (TCC) algorithm. The TCC detects local structures
with bond topologies similar to isolated clusters which minimise the potential energy for a number
of monatomic and binary simple liquids with m ≤ 13 particles. We detail a modified Voronoi bond
detection method that optimizes the cluster detection. The method to identify each cluster is outlined,
and a test example of Lennard-Jones liquid and crystal phases is considered and critically examined.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4832897]

I. INTRODUCTION

Research into the structure of disordered systems, such
as liquids, glasses, liquid-vapor interfaces, and cluster fluids,
has a rich history. Early studies focused on pair distribution
functions as these were readily accessible from experiments
using scattering techniques. The experimental results inspired
the development of theories with the capability to predict the
radial distribution functions for disordered states. The most
famous example of such a theory is perhaps the Percus-Yevick
closure of the Ornstein-Zernike relation which provides the
radial distribution function for the hard sphere fluid.1

Efforts to understand the structure of liquids in greater
detail than at the level of pair correlations of the particle
density were pioneered by Bernal,2 Rahman,3 and Finney.4

These authors studied the properties of Voronoi cells in liq-
uids, which are convex polyhedra that contain all points in
space closer to one particle than any other. The geometrical
characteristics of each polyhedron, such as the number and
shape of the faces, depends on the position of the particle and
its immediate neighbors. As such, Voronoi cells provide infor-
mation on higher-degree correlations of the particle density
than two-body distribution functions.

These studies into Voronoi polyhedra were among some
of the earliest that sought to characterize the structure of dis-
ordered systems in terms of the shapes formed by small clus-
ters of particles. Many subsequent efforts have been made in
this direction, and there are now several methods available
for quantifying structural correlations in disordered systems
in terms of the shapes of clusters of particles. We designate
methods as topological methods if they identify clusters from
topological features of the “bond network” formed by the
particle locations and the connections between neighboring
particles.

a)paddy.royall@bristol.ac.uk

Two topological methods that see frequent use are the
common neighbor analysis (CNA) introduced by Honey-
cutt and Andersen5 and the Voronoi face analysis (VFA) by
Tanemura et al.6 The CNA identifies the structural ordering
around pairs of particles in terms of shared (common) neigh-
boring particles. The VFA technique is a generalisation of the
early Voronoi cell studies. The structure around a single parti-
cle is characterized by the arrangement of its nearest neigh-
bors and the bonds between them. This information is en-
coded by the shapes of the faces of its Voronoi cell. Both of
these methods have been used to study phenomena includ-
ing the melting and freezing of clusters,5 structure in super-
cooled liquids on cooling towards the glass transition,7–12 and
crystallisation.6, 13, 14

An alternative approach is the bond orientational order
parameters, introduced by Steinhardt et al. to characterize
the arrangement of neighboring particles around a central
particle.15, 16 A series of bond orientation order (BOO) pa-
rameters are defined that quantify the similarity between the
directions from a particle to its neighbors and the spheri-
cal harmonic solutions to the Laplace equation, in a method
that has been described as a kind of shape spectroscopy.16, 17

BOO parameters have been applied for the study of a variety
of phenomena. Their original application was to study struc-
tural ordering in supercooled liquids,15, 16 where depending
upon the system under consideration, both icosahedral-18 and
crystalline-ordering19 has been found to develop on cooling
towards the glass transition. Other researchers have employed
BOO parameters to study the structure at interfaces20, 21 and
of large clusters.22 Arguably the most successful applica-
tion of BOO parameters however is as order parameters for
crystallisation.23–28

Recent advances in experimental techniques on colloidal
dispersions have delivered methods that allow measurement
of real space configurational data for colloids. In particu-
lar, particle tracking software allows the positions to be ex-
tracted from images taken with 3D confocal microscopy.29–31
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This development means that the structure of experimental
systems that display Brownian motion can now be analysed
with higher-order structural detection algorithms, with inter-
est in, for example, colloidal gels,32 glasses,29 and critical
fluctuations.33

Here we describe a recent addition to the collec-
tion of high-order structural detection algorithms, the
topological cluster classification (TCC) algorithm. This
algorithm has been used to investigate higher-order structure
in colloidal32, 34 and molecular35 gels, colloid-polymer
mixtures,36 colloidal clusters,37–39 simple liquids,60 liquid-
vapor interfaces,40 supercooled liquids,41–43 and crystallising
fluids.44 The method shares some characteristics with other
topological methods (e.g., the VFA and CNA methods). How-
ever, rather than detecting clusters around a central or pair
of particles, it is based on the detection of minimum energy
clusters with a range of sizes. By minimum energy cluster, we
refer to those structures which minimize the potential energy
of a given number of particles in isolation. Here we consider
spherically symmetric interactions, whose minimum energy
configurations can be calculated by optimization methods
such as in the GMIN software.45

The philosophy of the TCC algorithm draws heavily
upon an idea proposed by Frank in a seminal paper in 1952.46

When discussing the ability to stabilize metallic liquids below
the melting temperature, Frank proposed that collections of
particles may preferentially adopt certain energy-minimising
structures on short lengthscales. He inferred that if the sym-
metry of the structures formed is incommensurate with that of
the bulk crystal symmetry, the structures would inhibit crys-
tallisation and stabilize the undercooled melt. The basis for
this was that there must be a substantial rearrangement of
the structures for crystallisation to proceed, and this operation
would carry an energetic cost.

To demonstrate his idea Frank cited the example of the
minimum energy clusters formed by 13 Lennard-Jones parti-
cles in isolation. Arranging the particles at the centre and the
vertices of a regular icosahedron yields a cluster with 8.4%
lower interaction energy than for compact FCC or HCP crys-
tal clusters of 13 particles. Assuming that the energy of the
icosahedral arrangement would still be lowest for the three ar-
rangements in the disordered liquid environment, he inferred
that the icosahedral formations would be more prevalent than
FCC and HCP arrangements in the supercooled liquid. This
turned out to be a reasonable assumption, the icosahedron was
shown to have lower energy than either crystal arrangement in
a mean-field description of the Lennard-Jones liquid.47

While Frank considered minimum energy clusters of 13
Lennard-Jones particles for his example, as a natural exten-
sion, the TCC algorithm takes the minimum energy clusters
of other numbers of particles as well. The algorithm also con-
siders models with interactions other than the Lennard-Jones
potential. The TCC algorithm works by searching a config-
uration for arrangements of m particles whose bond network
is similar to that found in the minimum energy clusters of
a given model. By identifying minimum energy clusters of
the model of interest, the method therefore provides a direct
link between the interactions in the system under considera-
tion and any structural ordering that is found. Moreover, the

TCC simultaneously finds clusters for all models incorpo-
rated. Thus an analysis of a given coordinate set is not lim-
ited to the minimum energy clusters which correspond to the
model with which the set was generated.

The TCC favors no specific “origin” particles for the
clusters, i.e., a central particle or a bonded pair. This means
that routines can be devised to detect clusters with disparate
shapes and sizes where there are no such “origin” particles.
This stance differentiates the TCC from many of the other
structure detection methods. The algorithm presented here
includes detection routines for minimum energy clusters of
up to 13 particles for the models that are considered. Ex-
tending the algorithm to include detection routines for larger
minimum energy clusters is possible. This paper is orga-
nized as follows. In Sec. II, we give a high-level overview
of the method, and proceed, Sec. III, to detail the Voronoi
construction devised to optimize the structure detection algo-
rithm. In Sec. IV and the Appendix, we provide details of the
TCC detection routines for specific clusters. In Sec. V, we
demonstrate the TCC algorithm by identifying the structure
in Lennard-Jones crystals. In Sec. VI we critically analyse its
performance on four phases of the Lennard-Jones system be-
fore concluding in Sec. VII.

II. OVERVIEW OF THE TOPOLOGICAL CLUSTER
CLASSIFICATION

A high-level overview of the TCC algorithm is as
follows:

1. The neighbors of each particle are identified.
2. The network formed by the particles and connections to

their neighbors is searched for shortest-path rings of 3,
4, and 5 particles.

3. From the shortest-path rings, a set of structures known as
the “basic clusters” are identified. The basic clusters are
distinguished by the number of additional particles that
are common neighbors of all the particles in a shortest-
path ring.

4. Larger clusters are then identified by combining basic
clusters together, sometimes with the addition of one or
two separately bonded particles, according to a set of
predefined rules. The method yields structures with bond
networks with similar topology to the bond networks of
the minimum energy clusters.

Throughout we endeavor to highlight the strengths and
weaknesses of the TCC method. Although the focus of the
TCC is on disordered systems, the performance of different
structure detection algorithms for identifying crystalline or-
der will provide a helpful benchmark for the accuracy and
efficiency of the algorithm. These tests are useful because the
ordering of particles in a crystal is known a priori, whereas
this is not necessarily the case for a disordered system.

III. DETECTING NEIGHBORS WITH VORONOI
TESSELLATIONS

Although simple and intuitive, the main disadvantage
of using a cut-off length to determine a particle’s neighbors
is the sensitivity of the result to the chosen length and the
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consequential difficulty in deciding which length yields the
most valid result. A method that can identify the neighbor
network independently of an adjustable length parameter is
therefore appealing. One such method is the Voronoi tessella-
tion which decomposes space into regions of non-intersecting
domains with distinct boundaries.48 Each region contains the
position of a single particle and all points in space closer to
that particle than any other. In three dimensions these regions
are convex polyhedra that are termed Voronoi cells. Two par-
ticles are neighbors if their Voronoi cells share a face. Two
particles with Voronoi cells that share only an edge or a vertex
are not considered bonded. It is important to make this clear
as later on we will consider the detection of four-membered
rings of particles with the Voronoi method. In practice, fluc-
tuations of the particle positions in thermal systems mean that
edge- and vertex-sharing polyhedra are rare.

The properties of Voronoi cells for disordered systems
were first studied by Bernal,2 Rahman,3 and Finney.4 Sub-
sequently the method of using a Voronoi tessellation to de-
fine neighbors in a network was popularized in studies of
crystallisation6 and glass-formers.49 The early studies of crys-
tallisation noted that the detection of the crystal-order when
using the Voronoi method was highly sensitive to thermal
fluctuations of the particle positions.6, 13, 50 The Voronoi cell
of a particle in a T = 0 FCC crystal contains six vertices
that are each common to four faces. Small thermal vibra-
tions lead to these vertices being split into two vertices joined
by a new edge. This adds a new common face between two
of the Voronoi cells of the neighboring particles, and conse-
quently adds a new bond to the system. The additional bond
complicates the detection of the crystalline order, as there are
a wide variety of Voronoi polyhedra in the thermal system
corresponding to a single crystal structure.

This problem is equivalent to the unwanted bond forming
across a square of particles as discussed in Sec. III A below.
Poor performance is often found when trying to detect
structures with fourfold symmetries (e.g., octahedral struc-
tures) when employing a structure detection method upon
the Voronoi neighbor network. For this reason numerous
authors have proposed modifications to the Voronoi method
in order that the detected bond network is more robust against
change by thermal fluctuations of the particles.13, 14, 51–53 The
sensitivity of the Voronoi method to thermal fluctuations can
be demonstrated by examining the number of first-nearest
neighbors it detects for FCC and HCP crystals. Frequently
second-nearest neighbors are misdetected as first-nearest
neighbors,14, 53, 54 meaning that the number of the first-nearest
neighbors is inflated.55

In the case of the TCC, one of us (SRW), proposed
a modification for the Voronoi method when introducing
the TCC structure algorithm to address this issue.56 The
method adds a dimensionless parameter that sets the max-
imum amount of distortion that a four-membered ring in a
plane can undergo before a bond forms between particles at
opposite vertices. Good performance was found for detec-
tion of octahedral structures in the hard sphere liquid,56 and
here also we demonstrate that detection of FCC and HCP or-
der is improved using the modified Voronoi bond detection
method.

The Voronoi method is attractive in that the neighbor
network can be identified without having to select an ad-
justable parameter. It provides a natural and intuitive way to
determine the neighbors for each particle. The method has
problems when thermal vibrations destroy degenerate vertices
and this scenario is especially relevant for the detection of
crystalline order if the number of first-nearest neighbors for
each particle is over-estimated.

A. A modified Voronoi method

Our modified Voronoi method makes two modifications
to the original Voronoi method (hereafter referred to as the
standard Voronoi method). The modifications are introduced
to improve the detection of the four- and five-membered rings
of particles.56 The first modification ensures that particles are
neighbors only if their Voronoi cells share a face and the line
that connects the particle positions intersects the shared face.
Pairs that obey this condition are known as “direct Voronoi
neighbors.”57–59 Conversely neighbors within the standard
Voronoi method for which this condition is not obeyed are
termed “indirect Voronoi neighbors.” This condition is de-
picted in Fig. 1(a) for a 2D system, where the connections
between direct Voronoi neighbors are highlighted with blue
lines, and with red line for the indirect Voronoi neighbors.
The second modification is to introduce a dimensionless pa-
rameter fc that controls the maximum degree of asymmetry
of a fourfold ring of neighbors before it is detected instead as
two threefold rings of neighbors.

The first condition has two effects when compared to the
standard Voronoi method:

1. It strictly reduces the number of bonds derived from the
Voronoi tessellation. The removed bonds occur when
the volume of the Voronoi cell of a third particle over-
laps with the line connecting the positions of two parti-
cles that share a Voronoi face. The third particle shields
the bond between the other pair and the bond present
in the standard Voronoi method is removed [Fig. 1(a)].
The removed bonds tend to be “long bonds” that cause
misdetection of second-nearest neighbors as first-nearest
neighbors.

2. Algorithms to detect neighbors that enforce this con-
dition are generally more straightforward to implement
than algorithms which detect all neighbors of the stan-
dard Voronoi method.

The direct Voronoi neighbors of particle i are identified
by first finding all particles within some cut-off distance rc,
which can be made as large as necessary. These particles are
ordered in increasing distance from i. A particle k is a direct
Voronoi neighbor of i if and only if for all j closer to i than k
is the angle subtended by the vectors rij and rkj is less than
π /2 radians. Or equivalently the inequality

rij · rkj > 0, (1)

holds ∀j, where |rij | < |rik|. Figs. 1(b) and 1(c) show cases
where this inequality is not and is satisfied respectively.

The second modification to the standard Voronoi method
improves detection of four-membered rings of particles.
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FIG. 1. (a) The lines that connect particle centres must also intersect the face that is shared between the two Voronoi cells for the particles to be bonded.
Particles i and k are not bonded therefore, as highlighted by the red line connecting their positions. Conversely all other particles are considered neighbors of
particle i (blue lines - direct Voronoi neighbors). Particle j is closer to i than k, and the volume of its Voronoi cell is shielding particle k from particle i. (b) and
(c) Identification of direct Voronoi neighbors. Particle k is further from i than j in both cases. In (b) particle k is not bonded to i as there exists j that is closer to i
and the angle subtended by vectors rij and rkj is greater than π /2 radians. Conversely k is bonded to i in (c) as the bond there is no shielding by j.

Consider particles placed at the vertices of a rhombus, as in
Fig. 2(a). If the rhombus were a perfect square there would be
a total of four bonds detected by the standard Voronoi method,
each running along the edges of the square. If the square is
distorted by any small amount to form a rhombus, a bond
forms between two particles on opposite vertices thus creat-
ing two three-membered rings of particles. This bond breaks
the detection of any cluster based on the integrity of a four-
membered ring, e.g., the octahedral cluster shown in Fig. 2(b),
when any small fluctuation of the particle positions causes a
distortion to the ring.

A dimensionless parameter fc, known as the four-
membered ring parameter,60 is introduced that determines the
maximum amount of asymmetry that a four-membered ring
of particles can display before it is identified as two three-
membered rings. Bonds between particles i and k [Fig. 2(a)]
will be removed if there exists a particle j that is both bonded

FIG. 2. Detection of four-membered rings of particles. (a) Particles are posi-
tioned at the vertices of a rhombus. In the case that h = w, i.e., a square, there
is no bond between particles i and k. If h < w then a bond forms between i
and k across the rhombus if using the standard Voronoi method. For a given
rhombus defined by h/w or θ , the existence of the bond between i and k in
the modified Voronoi method depends on the value of fc. (b) The detection of
an octahedral cluster with the CNA and TCC methods relies in the integrity
of its four-membered rings, e.g., the ring highlighted in red. Thermal fluctua-
tions may cause this structure to be detected incorrectly if using the standard
Voronoi algorithm to determine the neighbors of each particle.

to i and closer to i than k is, and that shields k from i. We
consider the plane perpendicular to rij that contains a point
rp = ri + fc(rj − ri). If fc < 1 this corresponds to moving
the plane perpendicular to rij and containing rj towards ri

[Fig. 3(a)]. Adapting Eq. (1), the condition for k to be bonded
to i is if ∀j where |rij | < |rik|:

rip · rkp > 0. (2)

Re-expressing the inequality in terms of the position of parti-
cle j gives (fc ̸= 0),

fc(ri · ri + rj · rj − 2ri · rj )

> ri · ri + rj · rk − ri · rj − ri · rk. (3)

Equation (3) is not invariant to swapping indices i and k. The
consequence of this is that i may be bonded to k but not vice
versa. It is therefore necessary to consider bonding from the
point of view of particle k. The plane perpendicular to rkj con-
taining rj is moved towards k such that it contains the point
rq = rk + fc(rj − rk). From the viewpoint of particle k, par-
ticles i and k are neighbors if ∀j where |rkj | < |rik|:

rkq · riq > 0. (4)

The inequalities in Eqs. (2) and (4) are depicted geomet-
rically in Figs. 3(a) and 3(b). Both inequalities are not sat-
isfied as the angles θ are obtuse. Adding together Eqs. (2)
and (4) yields a single, symmetric, criterion for i and k to be
bonded. If ∀j with |rij | < |rik|,

rip · rkp + rkq · riq > 0, (5)

i and k are said to be neighbors in the modified Voronoi
method.

Equation (5) is invariant to inversion of the indices i and
k, therefore the resulting modified Voronoi method neighbor
network is necessarily symmetric. A symmetric bond network
is a required in order to use either the CNA or TCC algo-
rithms to identify structure. Expanding Eq. (5) in j and set-
ting fc = 1 recovers the definition of all the direct Voronoi
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FIG. 3. The modified Voronoi four-membered ring parameter parameter fc
for the scenario in Fig. 1(c). Particles i and k are direct Voronoi neighbors (as
per Fig. 1(c)), however with the chosen value of fc they are not considered
as neighbors by the modified Voronoi method. This is because inequality (5)
from the main text is not satisfied. In (a) the particle k lies on the far side of
the plane perpendicular to rip and containing rp from particle i. Likewise in
(b), i lies on the far side of the plane perpendicular to rkq and containing rq
from k. Therefore rip · rkp + rkq · riq must be less than zero.

neighbors (Eq. (1)). However if fc < 1, the modified Voronoi
method neighbors (Eq. (5)) are only a subset of the direct
Voronoi neighbors.

To demonstrate the effect of fc we reconsider the rhom-
bus of particles in Fig. 2(a). The parameter fc determines the
maximum asymmetry of the rhombus (h/w) before a bond
forms between particles i and k on opposite vertices. Expand-
ing and rearranging Eq. (5) gives an inequality for a bond to
exist between i and k in terms of the particle separations:

fc >
r2
ik

r2
ij + r2

jk

. (6)

Using rij = rjk (side lengths of a rhombus are equal), rik = h
and Pythagoras’ theorem gives this condition in terms of the
lengths h and w:

fc >
2

1 + (w/h)2
. (7)

If fc is greater than this value then there is a bond between i
and k and the rhombus of particles is identified as two three-
membered rings. Conversely if fc is less than or equal to this
value then i and k are not bonded and the rhombus may be
a four-membered ring subject the status of j and l. This is
found by swapping w and h in Eq. (7). In terms of the angle θ

subtended by the bonds connecting j to i and k, the condition
for i and k to be bonded is

fc >
2

1 + [tan(θ/2)]−2
. (8)

For angles θ less than that where Eq. (8) is an equality, i and
k are bonded. If fc = 1, the angle θ = π /2 and for fc = 0.82
we have θ ≈ 1.39 (≈80◦). The limit for validity of Eq. (8) is
θ ≤ π /3 (θ ≤ 60◦), i.e., valid choices for fc are in the range
(0.5, 1].

The algorithm to identify the modified Voronoi neighbor
network is therefore as follows (see Fig. 4):

FIG. 4. Algorithm for detecting neighbors using the modified Voronoi
method. The apostrophes on j and k indicate the particles referenced by the
jth and kth elements of the set Si.

1. Loop over all N particles with index i.
2. Find all particles within rc of ri , where rc is to be longer

than the longest bond in the network, and add to a set Si.
3. Order the particles in Si by increasing distance from par-

ticle ri .
4. Loop over all elements j in Si, i.e., particles in increasing

distance from particle i.
5. For each j loop over all k > j in Si and eliminate kth

particle from Si if inequality (6) is not satisfied.

The particles left in the sets Si on completion are the mod-
ified Voronoi method neighbors of particle i. The value of rc

can be used to set the maximum bond length in the system.
Doing so would be useful if studying gels or cluster fluids, for
example, where long bonds are not desired between gaseous
particles or particles in separate clusters.

B. Comparison of the neighbor detection methods

We compare the neighbor detection methods by consider-
ing a Lennard-Jones system at fixed temperature T = 0.92 and
pressure P = 5.68 as studied by ten Wolde et al.62 Here we
use reduced units where Boltzmann’s constant kB = 1 and the
Lennard-Jones diameter σ = 1. The simulations are Monte
Carlo in the constant NPT ensemble and the potential is
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FIG. 5. Four phases of a Lennard-Jones system comparing neighbor detection methods. (a) The radial distribution functions for four phases of a Lennard-Jones
system at state point T = 0.92 and P = 5.68. Note that the position of the first minima of g(r) for the FCC and HCP phases is different from that of the BCC and
liquid phases. A single cut-off length cannot determine the neighbors consistently across all the phases. (b) Frequency of bond lengths for different neighbor
detection routines. The simple cut-off method is the dotted line (rc = 1.4) and the standard Voronoi method is the black line.61 The colored lines are for the
modified Voronoi method. The effect of reducing fc is to remove neighbor pairs that have large separations (long bonds) from the standard Voronoi neighbors.

truncated at rtr = 2.5. This state point corresponds to roughly
20% undercooling of the liquid phase. Four phases are consid-
ered: a supercooled liquid with N = 864, a FCC crystal with
N = 864, a HCP crystal with N = 1000 and a BCC crystal
N = 1024. The supercooled liquid is initialized by random in-
sertion with an overlap separation rol = 0.9, and the crystals
by particles on the lattice sites of a crystal filling the simula-
tion box. These samples are used to assess the performance
of the TCC in Sec. VI, but first we compare the cut-off, stan-
dard, and modified Voronoi bond detection methods. Before
proceeding we note that here the stable phase is the FCC crys-
tal, the others are metastable to varying degrees. However, for
our parameters (system size and run time) we saw no change
in the state or crystallization to FCC in the metastable states.
We choose to simulate one state point in this way so as to
provide a fair a test as possible of the TCC’s ability to detect
different structures.

In Fig. 5(a) the radial distribution function for each phase
is plotted about the first minimum. The position of the first
minimum for the liquid and BCC phases, rmin ≈ 1.5, is differ-
ent to that of the FCC and HCP crystal phases, rmin ≈ 1.36. A
single cut-off length does not therefore determine the neigh-
bors consistently between the phases with respect to rmin. This
may cause problems if interfaces exist in the system, or if
nucleation and growth is occurring.63

In Fig. 5(b) we plot the distribution of bond lengths
between neighbors for the under-cooled liquid as identified
by the different detection methods. If all particles were neigh-
bors the distribution of bond lengths is an unnormalized plot
of 4πρr2g(r). All the data coincide up to the first peak indicat-
ing that these neighbors are detected by all the different meth-
ods for bond detection. The data for the simple cut-off method
drop abruptly to zero at the cut-off length rc = 1.4, whereas
the Voronoi methods show a smooth transition to zero. The
standard Voronoi method gives the largest number of neigh-
bors in total and includes a number of pairs with separations
greater than rmin = 1.5 for this phase.

The effect of only considering direct Voronoi neighbors
as bonded with the modified Voronoi method is clear when
comparing the fc = 1.0 data to that of the standard Voronoi
method. The difference between the graphs indicates that the

indirect Voronoi neighbors have relatively long bonds. The ef-
fect of reducing fc is to further reduce the number of neighbors
with longer separations. The ideal choice for fc will be a func-
tion of the structure detection method that is being utilized.
Typically cluster detection algorithms, such as the TCC, are
sensitive to the inclusion of “long bonds” as these may cause
misdetection of structures. BOO parameters on the other hand
are less sensitive to the inclusion of long bonds providing
second nearest neighbors are not included. However, BOO
parameters are themselves sensitive to fluctuations that lead
to bonds being broken and reformed.64 A value fc = 0.82
for the TCC method was proposed, based on a study of the
hard sphere fluid.56 We also employ this value in the Lennard-
Jones test case in Sec. V. The choice for fc is discussed further
in the sections below.

IV. THE TOPOLOGICAL CLUSTER CLASSIFICATION
ALGORITHM

The topological cluster classification algorithm identifies
clusters within a bulk system that are defined by the minimum
energy clusters of m isolated particles interacting with a pair-
wise potential. The algorithm works by searching a neighbor
network for all three-, four-, and five-membered shortest path
rings of particles. The rings are categorized by the number
of common neighbors to all particles in the ring, forming a
set of “basic clusters.” Larger clusters are then identified as
concatenations of the basic clusters and additional particles.

This brief summary of the TCC algorithm allows two
important features of the method to be highlighted. (i) Be-
cause the minimum energy clusters form the candidate struc-
tures that are searched for within the bulk system by the TCC
algorithm, in the case that the bulk system is one of the mod-
els incorporated in the TCC, qualitative relationships can be
drawn between minimum energy clusters identified and the
interactions of the particles in the system. (ii) There is no
fixed size for the structural ordering that is considered by the
algorithm.

This section contains a description of the methodology
of the TCC algorithm. We proceed to define some pieces of
terminology used repeatedly throughout the methodology. If
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two sets of particles are being considered, for example, two
clusters or two shortest-path rings, we say two particles are
common if they are members of both sets, and distinct or un-
common otherwise. Additional particles are particles which
are not members of the immediate set under consideration.

A. Models

The TCC identifies minimum energy clusters of distinct
topology. Thus far, it incorporates a number of models, as de-
scribed here, but can be adapted to include clusters whose
bond topology is not yet included. Models covered include
the variable range Morse potential (Fig. 6), which reads

uM(r) = εMeρ0(σ−r)(eρ0(σ−r) − 2), (9)

where εM is the depth of the potential well and σ is a parti-
cle diameter. The range of the potential is set by ρ0.65, 66 For
ρ0 = 6, the minimum energy clusters for m ≤ 13 considered
are identical to those of the Lennard-Jones model. We also
include the m = 6 minimum energy cluster of the Dzugutov
potential.67, 68 As shown in Fig. 6, the Dzugutov potential is
distinguished by a repulsion at around r = 1.5, introduced to
suppress crystallisation.

We also include two binary Lennard-Jones glassform-
ers, the Wahnström69 and Kob-Andersen70 models. In the
Wahnström model two equimolar species of Lennard-Jones
particles interact with a pair-wise potential,

uLJ(r) = 4εαβ

[(
σαβ

rij

)12

−
(

σαβ

rij

)6
]

, (10)

where α and β denote the atom types A and B, and rij is the
separation. The (additive) energy, length, and mass values are
εAA = εAB = εBB, σ BB/σ AA = 5/6, σ AB/σ AA = 11/12, and
mA = 2mB, respectively. The Kob-Andersen binary mixture is
composed of 80% large (A) and 20% small (B) particles pos-
sessing the same mass m.70 The nonadditive Lennard-Jones
interactions between each species, and the cross interaction,
are given by σ AA = σ , σ AB = 0.8σ , σ BB = 0.88σ , ϵAA = ϵ,
ϵAB = 1.5ϵ, and ϵBB = 0.5ϵ.

FIG. 6. Some potentials considered in the TCC. Black long-ranged Morse
(ρ0 = 3.0), red short-ranged Morse (ρ0 = 25.0), green Lennard-Jones, and
blue is the Dzugutov potential.

FIG. 7. Neighbor networks for shortest-path rings of (a) three, (b) four, and
(c) five particles. Particles are denoted by black spheres and the bonds con-
necting them by black lines.

B. Shortest-path rings

The starting point of the TCC algorithm is a neighbor
network. The algorithm identifies all the shortest-path rings
of particles.71 Shortest-path rings are closed loops of bonded
particles in the neighbor network where the shortest distance
in terms of bonds between any two particles in the ring can
be achieved by traversing only bonds between the ring parti-
cles. Using more formal notation, if the neighbor network is
a graph G consisting of vertices V representing the particles
and edges E representing bonds between them, a shortest-path
ring is defined as a subgraph g ⊆ G where for all particles i
and j within g the equation dg(i, j) = dG(i, j) holds (dg/G(i, k)
is the minimum number of bonds connecting i and j within
the graph). The TCC method considers shortest-path rings of
three, four, and five particles. The neighbor networks for these
shortest-path rings are shown in Fig. 7. The three-, four-, and
five-membered shortest path rings are denoted sp3, sp4, and
sp5, respectively.

Shortest-path rings consisting of six or more particles
are rarely found in systems with short-range isotropic in-
teractions, unless the particle size disparity is rather higher
than the systems we consider (Sec. IV A).72 Thus so far the
TCC is limited to five-membered rings. It would be possi-
ble to extend the algorithm for systems with larger shortest-
path rings, such as network liquids and glasses, and patchy
particles.

The algorithm used to detect the shortest-path rings is
similar to that described by Franzblau71 and is depicted in
Fig. 8. Starting from the neighbor network G, a loop pro-
ceeds over all the particles, index i. The three-, four-, and five-
membered clusters containing i are generated by the back-
tracking method.73 A depth-first search proceeds over the
nb(i) neighbors of i with index j > i. If j has a neighbor
that is also bonded to i and with index k > j we have found
an sp3 ring. The search then proceeds through the neigh-
bors of j and subsequently back through indices j then i.
If no sp3 ring is identified for index combination ijk, the
depth-first search proceeds to seek out sp4 rings ijkl where
j < l, or sp5 rings ijklm where j < m. If no sp4 or sp5
ring is found the depth-first search halts and returns to the
next neighbor j of i. The inequality conditions stated for
the particle indices ensure that each ring is detected only
once when using this algorithm. The statistics of shortest-path
rings have been used as measures for local structure in their
own right, for example, in silica glasses71, 74 and hard sphere
crystals.53
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FIG. 8. Schematic flow diagram depicting the algorithm used to detect
three-, four-, and five-membered shortest-path rings.

C. The basic clusters

The basic clusters are identified upon the shortest-path
rings. The shortest-path rings are divided into three fur-
ther categories, denoted by spma, spmb or spmc, where
m is the number of particles in the ring. For spma clus-
ters there are no additional particles in the system that

are bonded to all m members of the spm ring. For spmb
there is a single additional particle that is a neighbor of
all members for the spm ring. For spmc there are two ad-
ditional neighbors for all the m ring particles. The addi-
tional particles bonded to the ring particles are termed spindle
particles.

It is assumed that the maximum number of particles
that can be bonded to any spm ring is two, and that if we
have an spmc cluster that the two additional particles are
located either side of the approximate plane defined by the
shortest-path ring particles. These two assumptions are non-
trivial and depend on the nature of the interactions, the state
point and the method used to derive the neighbor network.
The assumptions generally hold true to a good approxima-
tion if the interaction potential has a strongly repulsive core
at short ranges such that there is a steric minimum distance
for approach rst between the particles that is in practice not
breached. The second requirement is that the maximum length
of the bonds is only a small multiple of rst. The validity of
these conditions is a function of the interaction potential and
the method to detect the neighbors. It is prudent to check
that the number of common neighbors to the ring particles
is not frequently more than two in order to have confidence
that the results obtained from the TCC analysis have physical
significance.

For the spmc clusters, no condition is specified as to the
bonding between the spindles, i.e., they may be bonded or not
bonded. In practice, the spindles are rarely bonded for sp3c
clusters, rarely not bonded for sp5c, and bonded in around
half of all instances of sp4c clusters.

In total nine basic clusters are defined, as shown in
Fig. 9. The basic clusters include the first five minimum
energy clusters of the Morse potential consisting of three
or more particles. We follow the naming scheme of Doye
et al.66 and term the minimum energy clusters as 3A trimer
(sp3a), 4A tetrahedron (sp3b), 5A triangular bipyramid
(sp3c), 6A octahedron (sp4c), and 7A pentagonal bipyramid
(sp5c). These are also the minimum energy clusters for the
Lennard-Jones model.

FIG. 9. The basic clusters identified from shortest-path rings. If a basic cluster is a minimum energy cluster for m Morse particles its TCC name is shown below
the cluster. Two representations are shown for the basic clusters: renderings of the cluster where ring particles are gray, bonds between ring particles are white
and spindle particles are yellow, and neighbor networks as in Fig. 7.
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D. Compound clusters

Larger clusters are formed of one or more particles bound
to one or more basic clusters, or of collections of basic clus-
ters that are bonded to each other. We term these compound
clusters. Here and in the Appendix the detection routines for
compound clusters that are identified starting from the basic
clusters are described. For each compound cluster a number
of conditions are given for detection. These conditions are ex-
pressed in terms of how the constituent particles, either spin-
dle, ring, or additional, are connected by bonds. The condi-
tions are in general satisfied by a number of subtly different
bond networks that we term the TCC bond networks for a
minimum energy cluster. The TCC bond networks are simi-
lar to the bond network of the minimum energy configuration
of the cluster. Detecting structure in terms of multiple bond
networks allows for some degree of thermally induced distor-
tion of the cluster in the bulk relative to the minimum energy
structure.

The aims for a detection routine for a compound cluster
are that it is (i) accurate in detecting a given type of order
and (ii) simple to implement computationally. If the condi-
tions that a routine imposes for a particular cluster to exist are
overly restrictive, thermal fluctuations may mean that detec-
tion of the structure in a bulk system is rare. Likewise if the
conditions are not sufficiently prescriptive, the order may be
detected spuriously or conflicting types of order detected in
the same locality.

For the first of the stated aims, the accuracy of detection
will be a function of the system under study, the state point
and the method used to detect the bonds. The following three
general principles are followed relative to the minimum en-
ergy bond network in order to maximize the accuracy of the
routines:

1. The shortest-path rings of particles in basic clusters must
lie approximately in a plane in the minimum energy
configuration of the cluster.

2. The bonds that are required for the structure to exist
should all be of similar in length in the minimum energy
bond network.

3. The ratio between the shortest bond that if in place
would break the detection of the cluster to the longest
bond required for the cluster to exist should be max-
imized (where the bond lengths are taken from the
minimum energy configuration).

Simplicity of the routines is achieved by utilising the largest
sub-clusters where possible from the minimum energy bond
network for the cluster. If multiple sub-clusters are go-
ing to be required to detect the cluster, the overlap be-
tween the sub-clusters should be minimized. These guide-
lines minimize the number of conditions needed to detect the
cluster.

A summary of how the detection routines for the com-
pound TCC clusters are devised is as follows:

1. A configuration of particle positions for a cluster is
found by identifying a global or local minimum of the
potential energy landscape for a given potential. The
minimisation is performed using the GMIN method.45

2. The bond network is found for this configuration using
a neighbor detection method. In the case of the Morse,
Lennard-Jones and Wahnström models, this is the mod-
ified Voronoi method with fc = 0.82. The value fc = 1.0
is used for the Kob-Andersen model.

3. The basic clusters and other smaller compound clusters
are identified from within the bond network.

4. A set of sub-clusters that contain all the particles (per-
haps with the inclusion of one or two additional parti-
cles) is chosen and the detection routine is based upon
these sub-clusters.

5. The sub-clusters chosen tend to be the largest available
in the bond network, while ensuring that the three previ-
ously stated principles are obeyed as closely as possible.

6. Conditions are imposed on the particles shared be-
tween sub-clusters, the bonds required between the sub-
clusters and additional particles for the structure to exist.
The bonds are selected using principles 2 and 3 stated
above.

Detection of clusters is hierarchical: smaller sub-clusters must
be detected prior to larger compound clusters.

The naming scheme for the TCC clusters follows from
Doye et al.66, 75 for the minimum energy clusters of the Morse
potential. Each name mX describes the number of particles
in the cluster (m) and a character X denotes the potential for
which the cluster is a minimum energy configuration. The
characters X=A, B, C . . . indicate the range ρ0 of the Morse
potential for which the cluster is a minimum energy, where A
is for the longest ranges, and B, C, · · · indicate increasingly
short range attractions (i.e., increasing ρ0). The shortest range
Morse potential considered in Ref. 75 is ρ0 = 25.

The 6Z cluster is the minimum energy cluster for six
particles of the Dzugutov potential68 and only a local mini-
mum of the Morse interaction potential for 6 particles. Its de-
tection routine is included as it is a free energy minimum clus-
ter for six colloids with depletion-mediated attractions.37, 76, 77

Minimum energy clusters specific to binary KA and Wahn-
ström Lennard-Jones potentials are denoted by characters “K”
and “W,” respectively.

E. Summary of clusters

A summary of all the TCC clusters is given in Table I.
The model used to generate a configuration for a minimum
energy cluster is listed. The detection method for each clus-
ter is devised from the bond network which corresponds to
the minimum energy cluster in isolation. This bond network
necessarily depends on the method used to detect the particles
that are neighbors. It is possible that if another neighbor de-
tection method is employed to detect the bond network of the
minimum energy cluster, that a different bond network would
be obtained. It is therefore not guaranteed that the TCC algo-
rithm would identify a cluster if a neighbor detection method
is used that differs from the method used to identify the
network for the minimum energy cluster and define the TCC
routine for the detection of the cluster.

In practice, if using the simple cut-off or modified
Voronoi fc = 0.82, 1 methods, there are few cases when a
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TABLE I. Clusters detected by the TCC algorithm. The second column contains details for the reference poten-
tial used to make a configuration of the minimum energy cluster. mA denotes the number of A-species particles in
the minimum-energy cluster in the case of the binary systems. The bullets in the fc columns indicate if the TCC
algorithm successfully detects the cluster in its minimum configuration. The lengths rs and rl are the shortest and
longest bonds required in the minimum energy bond network in order that the TCC algorithm successfully detects
the cluster. The length rb is for the shortest bond that could form and result in the cluster no longer being detected.
The final column contains suggestions for CNA and VFA clusters with structure similar to the TCC clusters.

Cluster Model fc = 0.82 fc = 1 rl/rs rb/rs rb/rl CNA / VFA

3A ρ0 = 6 • • 1
4A ρ0 = 6 • • 1
5A ρ0 = 6 • • 1 CNA-2331
6A ρ0 = 6 • • 1 1.41 1.41 CNA-1441 / 2441
6Z ρ0 = 6 • • 1 1.63 1.63
7A ρ0 = 6 • • 1.01 1.62 1.61 CNA-1551
7K KA mA = 4 (7A) • 1.26 1.78 1.41 CNA-1551
8A ρ0 = 6 • 1.02 1.28 1.26
8B ρ0 = 6 • • 1.01 1.64 1.62
8K KA mA = 5 • 1.29 1.91 1.48 CNA-1661
9A ρ0 = 6 • 1.01 1.41 1.4
9B ρ0 = 6 • • 1.01 1.62 1.59
9K KA mA = 6 • • 1.26 1.75 1.39
10A ρ0 = 6 • 1.01 1.41 1.4
10B ρ0 = 6 • • 1.03 1.65 1.59
10K KA mA = 7 • • 1.29 1.76 1.37
10W Wahn mA = 9 • • 1.16 1.49 1.28 VFA-(0,0,9)
11A ρ0 = 3 • • 1.27 1.79 1.41 VFA-(0,2,8)
11B ρ0 = 3.6 • 1.18 1.3 1.11 VFA-(0,2,6,2)
11C ρ0 = 6 • • 1.06 1.67 1.58
11E ρ0 = 6 • • 1.03 1.65 1.6
11F ρ0 = 6 • • 1.01 1.42 1.41
11W Wahn mA = 8 • • 1.24 1.78 1.44 VFA-(0,1,6,3)
12A ρ0 = 2.5 • 1.2 1.36 1.13 VFA-(1,0,6,4)
12B ρ0 = 6 • • 1.07 1.69 1.58
12D ρ0 = 6 • • 1.04 1.66 1.6
12E ρ0 = 6 • • 1.01 1.42 1.41
12K KA mA = 8 • • 1.26 1.4 1.12
13A ρ0 = 6 • • 1.05 1.7 1.62 VFA-(0,0,12)
13B ρ0 = 14 • • 1.02 1.43 1.41 VFA-(0,10,2)
13K KA mA = 7 • • 1.29 1.76 1.36
FCC Bulk FCC • 1 1.41 1.41 VFA-(0,12)
HCP Bulk HCP • 1 1.41 1.41 VFA-(0,12)
9X Bulk BCC • • 1.15 1.63 1.41

cluster would go undetected if using a neighbor network dif-
ferent to that used to define the detection algorithm. Specifi-
cally, the Morse clusters 8A, 9A, 10A, and 11B fail to satisfy
one or more of the conditions for the clusters to exist when ad-
ditional long bonds are identified using the modified Voronoi
method with fc = 1 on the minimum energy configuration.
Conversely, the KA clusters 7K and 8K are not found using
fc = 0.82 as the detection routine relies on the existence of
bonds identified when fc = 1.

We consider the stability of the TCC cluster detection to
fluctuations in bond lengths by examining the lengths of the
bonds in the minimum energy bond networks for each clus-
ter. Specifically, we consider the lengths of the shortest rs and
longest bonds rl that are required to exist for the reference
minimum energy configuration of a cluster to be correctly de-
tected as that structure. If the ratio rl/rs is large a bond detec-
tion method that includes bonds longer than rl is necessary in
order to successfully detect the cluster.

As a rule of thumb, the Morse minimum energy clusters
have rl/rs ≈ 1 meaning that the bonds utilized by the TCC
detection routines for these clusters are all of similar length.
Exceptions to this rule are the 11A, 11B, and 12B clusters,
where better detection performance is obtained by using a
neighbor detection method that includes bonds with a wider
range of lengths, for example, the modified Voronoi method
with fc → 1. The KA and Wahnström clusters also have rel-
atively large ratios for rl/rs and a careful choice for the bond
detection method is necessary to determine structural order
accurately relative to the minimum energy clusters for these
systems. We also consider the shortest length rb of any ad-
ditional bond that if included in the bond network would not
satisfy one of the conditions for the cluster to exist. The ratio
rb/rs indicates the relative lengthscale of this additional bond.

The ratio rb/rl contains information on the robustness of
the detection routine for each cluster. A large value of rb/rl

indicates that there is a large separation between the longest
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FIG. 10. Comparison of the detection of FCC and HCP crystalline order
with the TCC and VFA methods. The number of FCC, HCP, and VFA-(0,12)
clusters is NC.

bond required for the cluster to be detected, and the shortest
bond that if included results in the cluster going undetected.
Clusters with low values of rb/rl, for example, 8A, 10W, 11B,
12A, and 12K, are difficult to identify reliably in thermal
systems.

Some of the minimum energy clusters with detection rou-
tines implemented by the TCC have similar structures to the
clusters identified by the CNA and VFA methods. Specifi-
cally, these are the clusters based around a pair of particles
or are a central particle and its complete first coordination
shell of neighbors. For these clusters the most similar CNA
and VFA clusters are indicated in the final column of Table I.

V. LENNARD-JONES FCC AND HCP CRYSTALS

We demonstrate the TCC algorithm on the simulations
of the four Lennard-Jones phases mentioned in Sec. III B.
Fig. 10 shows the ensemble average of the number of FCC and
HCP crystal clusters NC versus modified Voronoi parameter
fc for the FCC and HCP phases. For comparison the number
of (0,12) clusters is shown for the two phases as obtained with
the VFA method. For all values of fc the TCC algorithm finds
more of the crystal clusters than the VFA method because the
TCC detection routines allow for a greater distortion of the
order by thermal fluctuations. For both methods the number
of clusters tends to zero as fc → 1, because of the tendency of
the bond detection method to over-estimate the true number
of nearest neighbors by including long bonds. The number
of clusters identified also tends to zero for low values of fc
as the bond detection method does not find all of the nearest
neighbors. The optimal value of fc for best detection of the
crystalline order across both phases and methods is close to
the value of fc = 0.82 originally proposed by SRW.56

VI. FOUR PHASES OF THE LENNARD-JONES
SYSTEM

We proceed to consider the detection of structure in all
four phases of the Lennard-Jones system – BCC, FCC, and
HCP crystals, and liquid – for fc = 0.82. Here the state point is
the same as that in Sec. III B, thus the stable phase is FCC and
the liquid is supercooled. In Fig. 11(a) the fraction of all parti-
cles detected within each cluster type is shown for each phase,

FIG. 11. Detection of the Lennard-Jones minimum energy clusters with the
TCC algorithm. The bond detection method is modified Voronoi method with
fc = 0.82. (a) Fraction of particles detected within each cluster type. (b) Po-
tential energy difference of particles within each cluster type. (c) Deviation
of bond lengths between particles in each cluster type r̄C

ij from the mean bond
length r̄ij .

where NC is the number of particles detected to be within each
cluster type (as opposed to the number of clusters NC).

We begin by analysing the detection of crystalline FCC
and HCP clusters in their respective bulk phases, as this of-
fers a test for identification of phases with known local struc-
ture. All particles are found within FCC and HCP clusters,
i.e., NC/N ≈ 1, for the respective crystalline phases. We note
that NC ≤ NC for FCC and HCP clusters (cf. Fig. 10), as the
former measure is equivalent to counting the number of par-
ticles at the centre of the crystal clusters while the latter also
includes particles in the shells of crystal clusters even if they
are not themselves at the centre of another crystal cluster.

For the FCC crystal phase, 6A and 9X clusters are
detected in large quantities. This result is expected as these
clusters form part of the minimum energy structure of the
FCC crystal. Similarly 5A and 6A are part of the minimum
energy HCP crystal structure. The 5A and other clusters found
in trace quantities are not part of the minimum energy FCC
crystal structure. These clusters arise due to thermal fluctu-
ations of the particle positions creating transient bonds be-
tween particles that do not exist in the minimum energy con-
figuration. The 9X cluster is an example of this phenomenon
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for the HCP phase. For the BCC crystal phase 5A, 6A, and
9X are structures that are found universally throughout the
phase as these are part of the minimum energy crystal struc-
ture. Quantities of FCC and HCP are identified along with
trace amounts of the other clusters due to thermal fluctuations.

In the liquid phase the 5A structure is most frequently
seen and other structures are found in varying quantities. The
are trace amounts of FCC and HCP crystalline order, and the
13A icosahedron is the least frequently seen structure. This
result is contrary to Frank’s original hypothesis46 and has
been shown in earlier studies60, 78–80 and is attributed to ther-
mal fluctuations leading to disruption of the bond network,
which become more significant for larger clusters. Analysing
data following steepest descent quenches to yield inherent
structures would therefore be expected to enhance the number
of icosahedra identified. A sizeable fraction of particles within
9X structural environments are found in the liquid phase, con-
firming the statement in the Appendix that this cluster can-
not be used to uniquely distinguish crystalline order. Other
clusters are seen in various quantities.

In Fig. 11(b) the difference in potential energy between
particles identified within each cluster type and the all-particle
average is shown. The energy UC is the total potential energy
of all NC particles identified within a certain cluster type. The
energy UC/NC is therefore the mean potential energy of the
particles that participate in clusters of type C. This is com-
pared to with the mean potential energy of any particle, U/N.

For the FCC and HCP phases the formation of any
structural order not found in the minimum energy crystal by
thermal fluctuations is associated with an increase in potential
energy, relative to the average, for those participating parti-
cles. Trace amounts of FCC order are seen in the HCP phase
and, although the FCC crystal is the free energy minimum
phase for this state point,81 the increase in potential energy
arises due to the interfacial energy penalty of the boundary
introduced between the two crystalline structures.

For the BCC phase the formation of clusters not associ-
ated with either BCC, FCC or HCP crystalline order results in
an increase in potential energy for the participating particles.
When FCC and HCP order is formed the participating parti-
cles see a drop in potential energy. This result is an indication
of the greater stability of the FCC and HCP phases even at the
expense of introducing an interface.

For the liquid phase, the particles that participate in clus-
ters (of any type) have lower potential energy than the mean.
The exception is for the 5A structure where almost all the
particles participate in that type of cluster (N5A/N ≈ 1), and
UC/NC tends to U/N. There is a moderate anti-correlation be-
tween NC/N and the drop in potential energy for the minimum
energy clusters (5A to 13A).

Figure 11(c) displays the effect of participating in clus-
ters on the local packing of particles. The length r̄ij is the
mean bond length of the neighbor network, and r̄C

ij is the mean
length of bonds between particles participating in a particular
structure type. The difference r̄C

ij − r̄ij indicates the change
in bond lengths for particles forming a particular structural
order. The FCC and HCP phases show an increase in bond
lengths for structures not associated with the pure crystalline
order for each phase. This result implies that the formation of

any non-crystalline order is associated with local fluctuations
of the density. As the mean bond length in uniform systems
is proportional to ρ−1/3 to a good approximation, the magni-
tude of any density fluctuation is necessarily small due to the
low relative fluctuations in the mean length between the re-
gions of different structure. For the BCC phase the formation
of clusters associated with FCC and HCP order results in a
local increase in density. There is a local decrease in density
for any order found that is not associated with crystallinity.

In the case of the liquid phase only very small changes
in the mean bond lengths are seen on formation of the min-
imum energy clusters 5A to 13A. Again this indicates that
the formation of this order is not associated with any local
fluctuations in density, but instead caused by different orien-
tational arrangements of the particles being explored. There
is an increase in local density on formation of FCC and HCP
clusters, however, the magnitude of the increase is small com-
pared to the difference in densities of the liquid and crystalline
phases at this state point. Related behavior has recently been
observed in crystal nucleation in hard spheres, in the forma-
tion of a crystal nucleus by structural ordering prior to an in-
crease in density.28

For completeness Figs. 12 and 13 contain detection re-
sults for all the other structures that are included in the TCC
algorithm within the four Lennard-Jones phases. The results

FIG. 12. Detection of the other m = 6 to 10 particle clusters with the TCC
algorithm. Bond detection method is modified Voronoi with fc = 0.82.
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FIG. 13. Detection of the other m = 11 to 13 particle clusters with the TCC
algorithm. Bond detection method is modified Voronoi with fc = 0.82.

are broadly similar to those described above for the minimum
energy clusters and the FCC, HCP, and 9X clusters.

VII. SUMMARY

This paper details the TCC algorithm. This method iden-
tifies groups of particles whose bond network is similar to that
found in minimum energy clusters of a number of monatomic
and binary simple liquids. We have described the modification
to the Voronoi construction such that 4-membered rings are
more robust to thermal fluctuation. These 4-membered rings
are required for identification of a number of clusters. Then,
the algorithm was described and its implementation for 33 dif-
ferent clusters was discussed. The TCC was then tested on a
bulk one-component Lennard-Jones system in FCC and HCP
crystal phases where known local structure was subject to dis-
tortion by thermal fluctuations. The test then proceeded to a
supercooled liquid phase, where it was identified that particles
align into structures with topologies similar to that of a num-
ber of minimum energy clusters for the Lennard-Jones and
other models. The particles that participate in these structures
were found to reduce their potential energy by doing so, and
that this occurred not due to density fluctuations but to due to
their local changes in arrangement.

FIG. 14. The (a) 6Z and (b) 7A clusters. The two sp3 rings of the 5A clusters
are shown in white (5Ai) and blue (5Aj).
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APPENDIX: DETECTION ROUTINES FOR THE
CLUSTERS

In the following the symbol s is used to denote the in-
dex of a spindle particle in a basic cluster, r to denote a ring
particle, and a an additional particle. The subscripts “c” and
“d” on a particle index denote common and distinct parti-
cles, respectively. Sub-clusters are referenced by the indices
i, j, k, . . . .

1. m = 6 to m = 9 compound clusters

6Z. — The 6Z cluster is the minimum energy for six par-
ticles interacting with the Dzugutov potential68 [Fig. 14(a)].
It is also a local minimum of the Morse potential. See
Table II for details.

7K. — The 7K cluster is the minimum energy of KA
Lennard-Jones for seven particles [Fig. 14(b)]. In the mini-
mum energy there are four of the larger A-species particles.
We give a detection routine based on the bond network of the
minimum energy cluster as detected when using the modified
Voronoi method with fc = 1.0. The cluster is similar to a 7A
cluster, but one of the sp5 ring particles is drawn towards the
centre of the ring. The ratio of the longest to the shortest bond
in neighbor network of the minimum energy cluster is 1.26.
Both these bond types must be in place in the bulk system for
the cluster to be detected by the TCC algorithm. See Table II
for details.

8A. — The 8A cluster is the minimum energy of the
Morse potential for ranges ρ0 < 5.28 [Fig. 15(a)]. It con-
sists of two sp5b/c clusters and three detection routines are
necessary as detailed in Table II.

8B. — The 8B cluster is the minimum energy of the
Morse potential for ranges 5.28 ≤ ρ0 < 25 [Fig. 15(b)]. See
Table II for details.
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TABLE II. Detection routines for compound clusters for 6 ≤ m ≤ 8.

Cluster Detection routine Figure

6Z A pair of 5A clusters where: 14(a)
The are no common spindles between the two 5A clusters.
One spindle of 5Ai is common with a sp3 ring particle of 5Aj.
One spindle of 5Aj is common with a sp3 ring particle of 5Ai.
The spindles in the two sp3 rings are bonded.
Two particles are common between the sp3 rings of 5Ai and 5Aj.

7K A pair of 5A clusters where: 14(b)
5Ai and 5Aj have one common spindle particle.
The other spindle of 5Ai is distinct from all the particles in 5Aj.
The other spindle of 5Aj is distinct from all the particles in 5Ai.
There are two common particles between the sp3 rings of 5Ai and 5Aj.

8A A pair of sp5b clusters where: 15(a)
The spindle particles are distinct.
There are four common particles between sp5 rings of sp5bi and sp5bj.

Or A pair of sp5b clusters where:
Both 7Ai spindle particles are common with the 7Aj spindles.
There are four common particles between sp5 rings of 7Ai and 7Aj.

Or A sp5b cluster and a 7A cluster where:
One 7A spindle is common with the sp5b spindle.
The other 7A spindle is distinct from all the sp5b particles.
There are four common particles between sp5 rings of sp5b and 7A.

8B A 7A cluster and with one additional particle where: 15(b)
The additional particle is bonded to one 7A spindle.
The additional particle is bonded to two neighboring particles
in the sp5 ring particles of 7A.

8K Three 5A clusters where: 16(a)
Two common particles in the sp3 rings of 5Ai, 5Aj and 5Ak.
One common spindle between 5Ai and 5Aj.
One common spindle between 5Ai and 5Ak.
One common spindle between 5Aj and 5Ak.
One particle in sp3 ring of 5Ai is not in 5Aj and 5Ak.
One particle in sp3 ring of 5Aj is not in 5Ai and 5Ak.
One particle in sp3 ring of 5Ak is not in 5Ai and 5Aj.

8K. — The 8K cluster is the minimum energy of KA
Lennard-Jones for eight particles, and contains five of the
larger A-species particles [Fig. 16(a)]. See Table II for details.

9A. — The 9A cluster is the minimum energy for the
Morse potential for range parameter ρ0 < 3.42 [Fig. 16(b)].
See Table III for details.

9B. — The 9B cluster is the minimum energy for the
Morse potential for ranges 3.42 ≤ ρ0 < 25 [Fig. 17(a)]. See
Table III for details.

9K. — The 9K cluster is the minimum energy of KA
Lennard-Jones for nine particles, where six of the parti-

FIG. 15. The (a) 8A and (b) 8B clusters. For 8A the second sp5 ring is shown
in blue. For 8B a red additional particle is bonded to the labeled particles in
the 7A cluster.

cles are the larger A-species [Fig. 17(b)]. See Table III for
details.

10A. — The 10A cluster is the minimum energy for the
Morse potential for range parameter ρ0 < 2.28 [Fig. 18(a)].
See Table III for details.

10B. —The 10B cluster is the minimum energy for the
Morse potential for ranges 2.28 ≤ ρ0 < 25 [Fig. 18(b)]. The
detection routine presented decomposes 10B as a 9B and a 7A
cluster. The 10B cluster is the first compound cluster where
its detection routine relies on a sub-cluster that is also a com-
pound cluster (9B). It is equally valid to formulate the detec-

FIG. 16. The (a) 8K and (b) 9A clusters. Pink bonds indicate the shortest-
path ring in the kth sub-cluster involved in the detection of 8K and 9A.
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TABLE III. Detection routines for compound clusters for 9 ≤ m ≤ 10.

Cluster Detection routine Figure

9A Three sp4b clusters where: 16(b)
The three spindle particles are distinct.
There are no bonds between the three spindle particles.
There are two common particles between sp4 rings of sp4bi and sp4bj.
The distinct particles between the sp4 rings of sp4bi

and sp4bj form the sp4 ring of sp4bk.

9B Three sp4b clusters where: 17(a)
There is one common spindle particle.
The distinct spindle particles are bonded.
The distinct spindle of 7Ai is common with an sp5 ring particle of 7Aj.
The distinct spindle of 7Aj is common with an sp5 ring particle of 7Ai.
There are two common particles between the sp5 rings of 7Ai and 7Aj.

9K A pair of 6A clusters where: 17(b)
One common spindle particle.
The uncommon spindle of 6Ai is distinct from 6Aj.
The uncommon spindle of 6Aj is distinct from 6Ai.
There are two common particles between sp4 rings of 6Ai and 6Aj.
The common sp4 ring particles are bonded.

10A A pair of sp4b clusters where: 18(a)
All the particles in sp4bi and sp4bj are distinct.
The spindle particles of sp4bi and sp4bj are not bonded.
Each particle of sp4 ring of sp4bi is bonded to exactly two particles in sp4bj.
Each particle of sp4 ring of sp4bj is bonded to exactly two particles in sp4bi.

10B A 9B and 7A cluster where: 18(b)
One spindle from 7A is common to the “common spindle particle” of the 9B cluster.
The other spindle from 7A is bonded to the two distinct spindles of 9B.
Two sp5 ring particles from 7A are common with the distinct spindles of 9B.
Two sp5 ring particles from 7A are common with the distinct sp5 particles of 9B.
The final sp5 ring particle from 7A is distinct from the 9B cluster.

10K A 9K cluster with an additional particle where: 19(a)
The common spindle particle in 9K has one additional neighbor that
is distinct from all of the other 9K particles.

10W Six sp5b clusters where: 19(b)
All of the spindles are common.
The common spindle has coordination number 9.

tion of 10B in terms of three 7A clusters if prior detection of
9B clusters is not of interest. See Table III for details.

10K. — The 10K cluster is the minimum energy of KA
Lennard-Jones mixture for ten particles, where seven of the
particles are the A-species [Fig. 19(a)]. See Table III for de-
tails.

10W. — The 10W cluster is only a local minimum of
the Wahnström Lennard-Jones potential for ten particles with
nine A-species [Fig. 19(b)]. It is included for completeness

FIG. 17. The (a) 9B and (b) 9K clusters.

such that all the energy minimum clusters for each composi-
tion of mA A-species for m Wahnström particles are included
in the TCC algorithm. See Table III for details.

11A. — The 11A cluster is the minimum energy for 11
Morse potential for range parameter ρ0 < 3.40 [Fig. 20(a)].
The minimum energy cluster for the Morse potential ρ0 = 3 is
considered to understand the nature of the bonds required to

FIG. 18. The (a) 10A and (b) 10B clusters. For the 10A cluster the three
labeled sp4 particles indicate the bonding between the two sp4b clusters.
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FIG. 19. The (a) 10K and (b) 10W clusters. (a) The common spindle particle
of 9K and the additional particle are labeled. (b) The common spindle particle
of the sp5b clusters constituting 10W is shown.

be in place in order that 11A is detected by this routine. The
ratio of the lengths of the longest bond to the shortest bond re-
quired is 1.27. The longest bonds are those bonds between the
sp4 rings of the 6A clusters. The shortest bonds are between
the common spindle and the sp4 ring particles. Relatively few
11A clusters are detected when using a bond network that dis-
counts long bonds, e.g., when using a short cut-off length or
a low value of fc, as thermal fluctuations cause the bonds be-
tween the sp4 ring particles to break and the cluster to go
undetected.

FIG. 20. The (a) 11A and (b) 11B clusters. (a) The bonding between sp4 ring
particles in each 6A is shown by the labeled ring particles. (b) The additional
particle a1 is bonded to rd1 and rd3, and a2 is bonded to rd2 and rd4.

For the KA liquid the 11A cluster has previously been
identified as relevant for the glassy behavior.11, 42, 43, 82 The
KA minimum energy cluster is topologically equivalent to
11A, i.e., it has the same bond network, but the relative
lengths are different due to its composition in terms of eight
A- and three B-species. The ratio of the longest to the short-
est bonds is 1.23 and this is large enough to cause poor de-
tection of the 11A cluster when using the modified Voronoi
method with fc = 0.82. Therefore, the value fc = 1.0 is used to
determine the neighbors for when studying the KA
system.42, 82 See Table IV for details.

TABLE IV. Detection routines for compound clusters for 11A to 11E.

Cluster Detection routine Figure

11A Two 6A clusters where: 20(a)
One common spindle particle.
All other particles in 6Ai are distinct from those in 6Aj.
Each particle in the sp4 ring 6Ai is bonded to two particles in sp4 ring of 6Aj.
Each particle in the sp4 ring 6Aj is bonded to two particles in sp4 ring of 6Ai.

11Ba A 9B cluster and two additional particles wherea: 20(a)
The common spindle particle from the 9B cluster has coordination number 10.
The two additional particles are bonded to each other and to the common spindle
particle of 9B.
Each additional particle is bonded to two more particles in the shell of the
9B cluster, leading to a total of four bonds between the additional particles
and 9B.
For each additional particle, the two shell particles to which they are bonded
are not themselves bonded.
The four shell particles of the 9B cluster that are bonded to the two additional
particles form two pairs that are neighbors.

11C Two 7A clusters where: 21(a)
The is one common spindle particle.
There are two further common particles between 7Ai and 7Aj.
These are a bonded pair in the sp5 rings of 7Ai and 7Aj.
There are two further bonds between distinct particles in the sp5 rings of 7Ai

and 7Aj.

11E A 9B and 7A cluster where: 21(b)
One 7A spindle particle is common to one of the uncommon spindle
particles, sd1, in the 7A clusters constituting the 9B cluster.
The other spindle particle of the additional 7A is labeled sd3 and
is bonded to the other uncommon spindle particle sd2 in 9B and
the common spindle particle sc of 9B.
Of the 7A cluster sp5 ring particles, one is common to the common with
sc, one is common with sd2, and one is common to
one of the uncommon sp5 ring particles of the 9B cluster [r in Fig. 21(b)].
The final two sp5 ring particles are distinct from the 9B cluster.

aThe particles in the 9B cluster that are not the common spindle are termed the shell particles.
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FIG. 21. The (a) 11C and (b) 11E clusters. (a) Particle rd1 is a neighbor of
rd2 and rd3 is a neighbor of rd4. Particles rd5 and rd6 are not neighbors.

11B. — The 11B cluster is the minimum energy for 11
Morse potential for ranges 3.40 ≤ ρ0 < 3.67 [Fig. 20(b)]. See
Table IV for details.

11C and 11D. — There are two minimum energy clus-
ters of 11 particles for the Morse potential for ranges 3.67
≤ ρ0 < 13.57, namely, 11C and 11D [Fig. 21(a)]. Both these

FIG. 22. The (a) 11F and (b) 11W clusters. (a) The white and blue sp3 rings
are indicate the 5A clusters, and the pink and green sp4 rings indicate the
6A clusters. Only the spindles of the 5A clusters are highlighted in yellow.
(b) The additional neighbor a of the common spindle sc in the 10B cluster is
highlighted.

clusters have identical minimum energy bond networks, so
are not distinguished between by the TCC algorithm. We term
both clusters 11C. See Table IV for details.

TABLE V. Detection routines for compound clusters for 11F to 12E.

Cluster Detection routine Figure

11F Two 5A and two 6A clusters where: 22(a)
Each spindle in 5Ai is bonded to one spindle in 5Aj and vice versa.
Thus there are two pairs of bonded spindles, (st1, st2) and (sb1, sb2).
There is one common particle between the sp3 ring of 5Ai and 5Aj, rc.
There is one bond between the other particles in sp3 rings of
5Ai and 5Aj, forming a pair (rd1, rd2).
6Ak has one spindle in common with rc,
and the other spindle is distinct from 5Ai, 5Aj, and 6Al.
Its sp4 ring particles are rd1, rd2, st1, st1.
6Al has one spindle in common with rc, and the other
spindle is distinct from 5Ai, 5Aj, and 6Ak.
Its sp4 ring particles are rd1, rd2, sb1, sb1.

11W A 10B cluster and an additional particle where: 22(b)
The common spindle of the 10B cluster has coordination number 10.
The additional particle is not bonded to any of the distinct
spindles of the 7A clusters constituting the 10B cluster.

12A An 11C cluster with an additional particle where: 23(a)
The common spindle particle of the 11C has coordination number 11.
The additional particle is bonded to three particles in the 11C cluster:
the common spindle, and the two sp5 ring particles of the 7A clusters
constituting 11C that are not bonded to any of the other 7A cluster’s
particles [rd5 and rd6 in Fig. 21(a)].

12B 6 7A clusters where: 23(b)
There is one central 7A cluster with spindles sc and sd.
The other five 7A clusters have one spindle given by sc and
one spindle bonded to sd.

12D A 7A cluster and an 11E cluster where: 24(a)
The spindle particles of the 7A cluster are common with 11E cluster
spindles sd2 and sd3.
Of the sp5 ring particles of the 7A cluster, one is common to sc,
one is common to sd1, two are in the sp5 rings of the 7A clusters
constituting 11E [rc1 and rc2 in Fig. 24(a)], and one is new.

12E An 11F cluster and a 5A cluster where: 24(b)
The spindle atoms of the 5A cluster are common with the uncommon spindle
atoms of the 6A clusters constituting the 11F cluster.
Of the sp3 ring particles in the 5A cluster, two are common with rd1

and rd2 from the 11F cluster, and one is new.
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FIG. 23. The (a) 12A and (b) 12B clusters. (a) The additional particle is
bonded only sc, rd5, and rd6. (b) Five 7A clusters have spindles sc and s1 to
s5, the latter being bonded to sd of the central 7A cluster.

11E. —The 11E cluster is the minimum energy for 11
Morse particles with the range of the potential in 13.57 ≤ ρ0

< 20.60 [Fig. 21(b)]. See Table IV for details.
11F. —The 11F cluster is the minimum energy for 11

Morse particles with the range of the potential in 20.60 ≤ ρ0

< 25 [Fig. 22(a)]. See Table V for details.
11W. — The 11W cluster is the minimum energy

of Wahnström Lennard-Jones mixture for 11 particles
[Fig. 22(b)]. Nine of the particles are the larger A-species. See
Table V for details.

12A. —The 12A cluster is the minimum energy for 12
Morse particles with the range of the potential in ρ0 < 2.63
[Fig. 23(a)]. See Table V for details.

12B/C. — There are two minimum energy clusters of 12
particles for the Morse potential for ranges 2.63 ≤ ρ0 < 12.15,
namely, 12B and 12C [Fig. 23(b)]. Both these clusters have

FIG. 24. The (a) 12D and (b) 12E clusters. (a) The 7A cluster added to the
11E cluster has its sp5 ring highlighted with green bonds. (b) The additional
5A cluster to the 11F cluster has its sp3 ring highlighted with white bonds
and its spindles are st3 and sb3.

FIG. 25. The (a) 12K and (b) 13A clusters. (a) The additional particle a is
bonded to particles rd1, rd2, and rd3 in the sp4 rings of the 11A cluster.

TABLE VI. Detection routines for compound clusters for 12K to 13K.

Cluster Detection routine Figure

12K An 11A cluster with one additional particle where: 25(a)
The additional particle is bonded to three mutually bonded sp4 ring
particles in the 6A clusters that constitute the 11A cluster.

13A An 12B cluster is supplemented with a 7A cluster where: 25(b)
The 7A cluster has one spindle given by sc of the 12B cluster, and one
spindle that is distinct from the 12B particles.
The sp5 ring particles of the 7A cluster are distinct from the sp5 ring
particles of the central 7A cluster in 12B.

13B Two 7A clusters where: 26(a)
There is one common particle between 7Ai and 7Aj, which is a spindle sc.
Other spindle particles are distinct and not bonded.
Each particle from sp5 ring of 7Ai is bonded to one sp5 particle of 7Aj.
Each particle from sp5 ring of 7Aj is bonded to one sp5 particle of 7Ai.

13K An 11F cluster and two 5A clusters where: 26(b)
Cluster 5Ai has spindles st1, sb1.
The sp3 ring particles of 5Ai are rc

The other sp3 ring particle from the 5A cluster in 11F with spindles
st1, sb1 that is not rd1 in Fig. 22(a).
The third sp3 ring particle from 5Ai is distinct from the 11F cluster.
Cluster 5Aj has spindles st2, sb2.
The sp3 ring particles of 5Aj are rc

The other sp3 ring particle from the 5A cluster in 11F with spindles
st2, sb2 that is not rd2 in Fig. 22(a).
The third sp3 ring particle from 5Aj is distinct from the 11F cluster.
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FIG. 26. The (a) 13B and (b) 13K clusters. (a) Each sp5 ring particle from
one 7A clusters is bonded to a single sp5 ring particle in the other 7A cluster.
(b) The sp3 rings of the additional 5A clusters are not shown.

identical minimum energy bond networks and so cannot be
distinguished between by the TCC algorithm. We term both
clusters 12B. See Table V for details.

FIG. 27. The (a) FCC and (b) HCP clusters. (a) The six-membered ring
consists of the gray particles in the horizontal plane around sc. (b) The
six-membered ring consists of the gray particles in the horizontal plane
around rc.

12D. — The 12D cluster is the minimum energy for 12
Morse particles with the range of the potential in 12.15 ≤ ρ0

< 17.08 [Fig. 24(a)]. See Table V for details.

TABLE VII. Detection routines for crystalline clusters.

Cluster Detection routine Figure

FCC Four sp3b or three sp3b and a 5A cluster where: 27(a)
The spindle particles of sp3bi, sp3bj, and sp3bk are all bonded to each other.
There is one common particle sc between sp3bi,
3bj, and sp3bk, which is in the sp3 ring of each cluster.
The rest of the particles are distinct.
One of the uncommon sp3 ring particles in sp3bi is bonded to one uncommon
3 ring particle in sp3bj, and the other is bonded to one uncommon ring particle
in sp3bk.
One of the uncommon sp3 ring particles in sp3bj is bonded to one uncommon sp3
ring particle in sp3bi, and the other is bonded to one uncommon
ring particle sp3bk.
One of the uncommon sp3 ring particles in sp3bk is bonded to one uncommon sp3
ring particle in sp3bi, and the other is bonded to one uncommon
ring particle in sp3bj.
Excluding the spindle particles, we now have a six-membered ring of particles around
sc. The six-membered ring defines six sp3 rings with sc,
three of which were the sp3 rings for sp3bi, sp3bj, and sp3bk, and three of
which are new.
The fourth sp3b cluster or the 5A cluster have a spindle sc.
Each sp3 particle in the fourth cluster forms an sp3b cluster with each of
the new sp3
rings from the six-membered ring around sc.
If the fourth cluster is a 5A cluster, its spindle that is not sc is not counted
as part of the FCC cluster.

HCP Three 5A clusters where: 27(b)
There is one common particle rc between 5Ai, 5Aj, and 5Ak that
is in the sp3 ring of each cluster.
The spindle atoms from 5Ai, 5Aj, and 5Ak form two sp3 rings (st1,
st2, st3) and (sb1, sb2, sb3).
Within the three 5A clusters, the spindle atoms are only bonded to the particles from
the cluster’s own sp3 ring.
The uncommon sp3 ring particles from 5Ai, 5Aj and 5Ak form a six-membered ring
around rc, i.e. each is bonded to a single particle from any of the other cluster’s
uncommon sp3 ring particles.

9X Two sp4b or two 6A or an sp4b and a 6A cluster where: 28
The is one common particle between the clusters, which is a spindle particle.
Each of the particles in the two sp4 rings of the constituent clusters is bonded to one
particle in the other sp4 ring.
NB. If identified with 6A clusters, the uncommon spindle atoms in 9X are not counted
as part of the cluster.
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FIG. 28. The 9X cluster. Each particle in the sp4 rings is bonded to a single
particle in the other sp4 ring.

12E. — The 12E cluster is the final Morse cluster for 12
particles [Fig. 24(b)]. It is the minimum energy for ranges
17.08 ≤ ρ0 < 25. See Table V for details.

12K. — The 12K cluster is the minimum energy of KA
Lennard-Jones mixture for 12 particles, where eight of the
particles are the larger A-species [Fig. 25(a)]. See Table VI
for details.

13A. — The 13A cluster is the minimum energy for 13
Morse particles with the range of the potential in ρ0 < 14.76
[Fig. 25(b)]. This cluster is topologically equivalent to the
icosahedral cluster discussed by Frank.46 See Table VI for
details.

13B. — The 13B cluster is the minimum energy for 13
Morse particles with the range parameter of the potential in
14.76 ≤ ρ0 < 25 [Fig. 26(a)]. See Table VI for details.

13K. — The 13K cluster is the minimum energy of KA
Lennard-Jones mixture for 13 particles, where seven of the
particles are the larger A-species [Fig. 26(b)]. See Table VI
for details.

2. Crystal clusters

In order to detect crystalline structure and to test the per-
formance of the TCC algorithm against phases with known
structure, detection routines are implemented for crystalline
clusters.

FCC. — The m = 13 FCC cluster is a particle and its
first-nearest neighbors as taken from a FCC crystal lattice
[Fig. 27(a)]. See Table VII for details.

HCP. — The m = 13 HCP cluster is a particle and its
neighbors taken from a HCP crystal lattice [Fig. 27(b)]. See
Table VII for details.

9X. — The 9X cluster is found in the minimum energy
FCC and BCC crystal lattices [Fig. 28]. However, the size of
the cluster means that it does not uniquely determine crys-
talline order (in the same manner that tetrahedral order, al-
though found in all bulk crystalline states, does not imply
crystallinity). See Table VII for details.
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