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The behaviour of materials under spatial confinement is sensitively dependent on the nature of the
confining boundaries. In two dimensions, confinement within a hard circular boundary inhibits the
hexagonal ordering observed in bulk systems at high density. Using colloidal experiments and Monte
Carlo simulations, we investigate two model systems of quasi hard discs under circularly symmetric
confinement. The first system employs an adaptive circular boundary, defined experimentally us-
ing holographic optical tweezers. We show that deformation of this boundary allows, and indeed is
required for, hexagonal ordering in the confined system. The second system employs a circularly
symmetric optical potential to confine particles without a physical boundary. We show that, in the
absence of a curved wall, near perfect hexagonal ordering is possible. We propose that the degree to
which hexagonal ordering is suppressed by a curved boundary is determined by the “strictness” of
that wall. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4867785]

I. INTRODUCTION

The behaviour of materials under spatial confinement is
modified compared to that in the bulk. On reducing a system
to a lengthscale comparable to the size of its constituent par-
ticles one observes new structures,1–3 modified dynamics,4, 5

and phase behaviour differing from that of the bulk system.6–8

While many effects of confinement are due to finite sys-
tem size and volume exclusion effects near a wall, others
can be attributed to the properties of the boundary. For in-
stance, local density is enhanced in the vicinity of an attrac-
tive wall and decreased near a repulsive wall.9 As a conse-
quence, the freezing temperature of materials is raised with
respect to the bulk when confined by attractive walls while
repulsive walls have the opposite effect, lowering the freez-
ing temperature.10, 11 Furthermore, confinement by smooth
boundaries affects behaviour differently than similar rough
walls. For sufficient system density, smooth walls induce par-
ticle layering resulting in oscillatory density profiles perpen-
dicular to the boundary, often promoting crystallisation.12–16

If instead the wall is rough on the particle lengthscale, this
layering is inhibited and crystallisation is suppressed.4, 17, 18

Dynamically, rough walls are found to suppress particle mo-
bility compared to smooth walls resulting in an increase in
relaxation time.19–21 The density (in colloidal samples) or
temperature (in molecular liquids) at which the glass transi-
tion occurs is similarly dependent on the confining length-
scale and the boundary details.10, 19, 22–24 Through understand-
ing and controlling the boundaries confining a system one
can alter the energy landscape it experiences, offering new

a)Electronic mail: ian.williams@bristol.ac.uk

routes to self-assembly and control of reaction rates and crys-
tal growth.3, 25–27

The research described here is concerned with a two-
dimensional hard disc system. At sufficient density, bulk hard
discs adopt a locally hexagonal structure.28, 29 When con-
fined to a narrow channel by smooth, hard walls, however,
new structural ordering emerges. For confining walls sepa-
rated by a distance corresponding to an integer number of
close packed particle layers, the confinement is commensu-
rate with the crystalline lattice and hexagonal ordering is
unimpeded.14, 30 In the incommensurate case, when an inte-
ger number of hexagonal layers do not fit the channel, buck-
led structures arise.31 At lower particle densities, a modulated
fluid structure exists, consisting of particle layers parallel to
the walls.32

Although locally hexagonal ordering is possible in hard
disc systems confined by smooth, flat walls, such ordering is
incommensurate with a curved boundary, resulting in the sup-
pression of hexagonal ordering in a variety of systems con-
fined by a hard circular wall. Instead, circularly confined sam-
ples adopt a concentrically layered structure that mimics the
symmetry of the confining geometry33–36 as predicted by den-
sity functional theory.37 If, instead of a strictly hard wall, the
circular boundary is soft or adaptive then qualitatively differ-
ent behaviour is observed. We have previously shown that a
deformable circular boundary capable of responding to the
shape of a confined sample allows locally hexagonal order-
ing for sufficiently dense systems.38 The result is an entrop-
ically driven bistability between concentrically layered con-
figurations reminiscent of hard wall confinement and these
structures with enhanced locally hexagonal order reminis-
cent of bulk hard discs at comparable densities. Such locally

0021-9606/2014/140(10)/104907/9/$30.00 © 2014 AIP Publishing LLC140, 104907-1
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hexagonal ordering is not observed in equivalent systems con-
fined by hard walls, suggesting that this behaviour is facili-
tated by the decreased “strictness” of a deformable boundary
compared to a hard wall.

Here we explore the role of the strictness of a curved
boundary in inhibiting locally hexagonal ordering in circu-
larly confined hard disc systems through a combined exper-
imental and simulated approach to two model systems. We
describe the relationship between boundary deformation and
hexagonal ordering in the experimental model system known
as the “colloidal corral”38 and show, via Monte Carlo sim-
ulation, that controlling the deformability of the confining
boundary allows the tuning of the aforementioned structural
bistability. A qualitative comparison is made to a second
model system for soft circularly symmetric confinement de-
fined without a wall, representing a minimally strict bound-
ary. A similar comparison has previously been employed by
Schweigert et al.39 to study re-entrant behaviour in the melt-
ing of two-dimensional clusters. We demonstrate that decreas-
ing boundary strictness is inherently associated with the ca-
pacity for enhanced locally hexagonal ordering as long as the
boundary is sufficient to maintain the system at high density.
The implication is that the structure of a confined material can
be altered by modifying the boundary, allowing in situ driving
of a system between qualitatively distinct configurations.

II. MODEL SYSTEMS

A. The colloidal corral

1. Experimental details

The colloidal corral model system is defined in a quasi-
two-dimensional colloidal suspension by localising 27 parti-
cles on a circle using holographic optical tweezers.40, 41 These
optically trapped particles create a deformable circular bound-
ary for additional identical particles confined to the interior.
A schematic of this geometry is shown in Fig. 1. The exper-
imental colloidal sample consists of polystyrene spheres of
diameter σ = 5 μm and polydispersity s = 2% in a water–
ethanol mixture at a ratio of 3: 1 by weight. The density
mismatch between the particles and the solvent is such that
their gravitational length is lg/σ eff = 0.015(1) resulting in
sedimentation of suspended particles and the formation of a
quasi-two-dimensional monolayer adjacent to a glass cover-
slip. This coverslip is made hydrophobic by treatment with

g

(a) (b)z

x

y

x

R R

FIG. 1. Schematic showing colloidal corral geometry from two perspectives.
(a) Cross-sectional view in the x–z plane highlighting gravitational confine-
ment to quasi-two-dimensions. (b) Top-down view in the x–y plane, as seen
in micrographs. Particles marked with red dots are localised in optical traps.
R is the radius of the optically defined confining ring.

Gelest Glassclad 18 to prevent particle adhesion. These parti-
cles exhibit hard-disc-like behaviour.38

An optically trapped sphere displaced from its potential
minimum experiences a Hookean restoring force and as such
the corral boundary is deformable and capable of responding
to the interior sample in an adaptive manner. Corral adaptivity
is characterised by a single radial spring constant, κexp, deter-
mined by measuring the probability distribution of radial co-
ordinates for boundary particles in the absence of a confined
population. The optical potential is extracted and fit with the
parabolic form characteristic of a Hookean spring. The result-
ing spring constant is κexp = 302(2) kBT σ−2

eff where σ eff is the
effective hard sphere diameter of the polystyrene particles, de-
fined below. Experimental data are acquired for up to 6 h at
0.5 frames per second and particle trajectories are extracted.42

2. Simulation details

Complementary Monte Carlo simulations of a similarly
confined hard disc system are performed. Twenty-seven discs
are located in parabolic potential energy wells arranged on
a circle of radius R0, mimicking the optical traps employed
experimentally. The ratio of the corral radius and the disc di-
ameter serves as a fit parameter for matching simulation to ex-
periment. The best agreement is found for R0/σ = 4.32. This
fit is then used to determine the effective Barker-Henderson
hard sphere diameter for the experimental system43 which ac-
counts for electrostatic interactions between colloids. This re-
sults in a Debye length of λD ≈ 25 nm which is consistent with
the experimental conditions. In this manner, the effective hard
sphere diameter is determined to be σ eff = 5.08 ± 0.016 μm,
the uncertainty in which is less than that introduced due to
polydispersity in the experimental particle size. Both experi-
mental and simulated data are reported in terms of the inter-
nal effective area fraction defined as φeff = (πσ 2

eff)/(4〈AVor〉)
where 〈AVor〉 is the average area per particle calculated via a
Voronoi decomposition of the system. Each state point was
run for a period of 107 sweeps and sampled every 1000
sweeps. Each sweep corresponded to an attempted move of
each particle (including the particles in traps). The step size
for the moves was adjusted such that the acceptance rate was
close to 40%. No systematic drift change in any observed
quantity was found, indicating that after 1000 sweeps the sys-
tem had reached a stationary state.

3. Corral phase behaviour

We have previously reported the phase behaviour ob-
served in both the experimental and simulated corral
systems38 which is summarised in Fig. 2. At low effective area
fraction the interior sample is fluid-like as shown in Fig. 2(c).
On increasing the confined population the curved wall forces
the formation of concentric particle layers [Fig. 2(b)]. This
structure is qualitatively similar to those observed for circu-
lar confinement imposed by a hard wall.33–36 For φeff � 0.77,
however, a bistability is observed between concentrically lay-
ered structures and configurations exhibiting a greater degree
of locally hexagonal ordering [Fig. 2(a)].
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FIG. 2. Colloidal corral phase diagram and illustrative micrographs. At low
density the interior is fluid-like (c). On increasing density a concentrically
layered structure develops (b). For φeff � 0.77 there exists a bistability be-
tween concentrically layered and locally hexagonal configurations (a). Left
hand side shows phase behaviour for bulk hard discs at comparable area
fractions.28

B. The optical bowl

1. Experimental details

As a point of comparison with both the adaptive corral
confinement described above and the hard wall circular con-
finement described in the literature,33–37, 39 a second experi-
mental model system is presented enabling circularly sym-
metric confinement in the absence of a physical boundary.
The holographic optical tweezers system used in forming the
colloidal corral employs a 100× magnification microscope
objective of numerical aperture NA = 1.3. This focuses the
trapping laser tightly, resulting in stable optical tweezers. By
replacing this lens with an objective of numerical aperture NA
= 0.5 the beam is only weakly focused. Such an arrangement
is identical to that employed by Arthur Ashkin in his initial
observations of laser radiation pressure44 and is insufficient
to stably trap a colloidal sphere in three dimensions. Later-
ally, a dielectric particle exposed to such a weakly focused
beam experiences an optical gradient force acting towards the
beam axis while it is axially accelerated downstream by the
optical scattering force.

By replacing the water–ethanol solvent mixture with
deuterated water, the density mismatch forming quasi-two-
dimensionality in the colloidal corral experiments is inverted
and the polystyrene particles cream to the top of the sam-
ple cell. The gravitational length for σ = 5 μm polystyrene
colloids suspended in deuterated water is lg/σ = −0.025(3)
where the negative sign represents the fact that the particles
cream rather than sediment. The optical scattering force act-
ing on these particles has no effect as it is entirely balanced
by the microscope slide substrate resulting in a quasi-two-
dimensional colloidal sample that is free to explore the optical
energy landscape defined by the lateral gradient forces. For
the loosely focused Gaussian beam employed here this land-
scape consists of a central energy minimum on the beam axis

Low NA
Objective

Beam Waist

Focal Plane

Divergent
Beam

D2O

z

(a)
(b)

(c)

(d)

FIG. 3. (a) Schematic illustrating optical system forming an extended, bowl-
like optical potential capable of exerting gradient forces on multiple particles
simultaneously. (b) One-dimensional schematic of the optical bowl potential
well capable of acting on multiple particles simultaneously. Arrows indicate
forces acting towards the minimum on the optical axis. ((c) and (d)) Example
micrographs showing clusters of varying size and quality assembled within
optical potentials created in this manner. Scale bars indicate 10 μm.

and is everywhere else attractive towards this minimum. The
loose focus also results in a beam waist that is larger than the
particle diameter, meaning the optical potential energy land-
scape is capable of exerting forces on multiple particles simul-
taneously. All particles illuminated by the beam are attracted
towards the beam axis, resulting in an extended, bowl-like op-
tical potential. This setup is illustrated schematically in Fig. 3.

The width and depth of this potential are controlled by
altering the beam divergence at the objective entrance aper-
ture and the laser power, respectively. A divergent beam is
focused downstream of the objective focal plane, subjecting
the sample to a potential of greater width than the beam waist
as illustrated in Fig. 3(a). Increasing divergence increases the
potential width. Similarly, an increase in laser power results
in a deeper potential.

The optical bowl is circularly symmetric and acts upon
multiple particles simultaneously, drawing them towards the
beam axis. A one-dimensional illustration of this is shown
in Fig. 3(b). Consequently, two-dimensional clusters are ob-
served in the potential region, two examples of which are de-
picted in Figs. 3(c) and 3(d). The size and degree of hexagonal
ordering within a cluster are dependent on the width and depth
of the applied potential. Experiments are performed in which
clusters assemble until they span the potential region, and the
final assembled states are analysed. The assembly of simi-
lar two-dimensional colloidal clusters has previously been re-
ported by Juárez et al. employing an alternating quadrupolar
electric field in creating a bowl-like energy landscape.45, 46

2. Simulation details

Monte Carlo simulations are performed in which a dilute
hard disc system is allowed to explore a Gaussian potential
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well defined by its depth and standard deviation. In contrast
with the parabolic well investigated by Schweigert et al.,39 the
optical bowl is assumed to be Gaussian due to the Gaussian
profile of the laser beam employed in experiment. As with
the experimental system, the simulated clusters are allowed to
evolve until they span the potential and their final structures
are analysed. Five independent simulations are performed at
every combination of width and depth considered. By match-
ing the properties of the experimentally observed clusters to
those formed in simulation the experimental optical potentials
are characterised in terms of their depth and width.

C. Structural analysis

In both model systems hexagonal ordering about a given
particle j is quantified using the bond orientational order pa-
rameter, ψ

j

6 , defined as

ψ
j

6 =
∣∣∣∣∣

1

zj

zj∑

m=1

exp
(
i6θj

m

)
∣∣∣∣∣ , (1)

where zj is the coordination number of particle j, m labels
its neighbours, and θ

j
m is the angle made between a reference

axis and the bond joining particles j and m. The vertical bars
represent the magnitude of the complex exponential. Particle
neighbours are identified through a Voronoi decomposition.
ψ

j

6 = 1 represents perfect hexagonal ordering around particle
j while lower values represent a weaker degree of local hexag-
onal structure. Taking the average of ψ

j

6 over all confined par-
ticles yields an average bond-orientational order parameter,
ψ6, characterising the hexagonality of the entire system.

In the corral system, boundary curvature inhibits hexago-
nal ordering in the particle layer directly adjacent to the wall.
In all experimental samples for which φeff > 0.7, ψ

j

6 ≈ 0.5
in this layer. Since this layer contains up to half of the con-
fined population this wall-defined value of ψ

j

6 dominates the
spatial averaging, suppressing variations in ψ

j

6 deeper in the
corral. For this reason, ψj

6 averages within the colloidal corral
are taken over particles whose radial position r < 0.7R, where
R is the corral radius. This excludes the wall-adjacent layer
from the average, rendering ψ6 more sensitive to changes in
local structure.

Clusters formed in the optical bowl are identified using
a connectivity algorithm based on a Voronoi decomposition
with the condition that neighbouring particles must be sepa-
rated by <1.3 σ eff. This method is insensitive to reasonable
changes in this neighbour cut-off length.47 Hexagonal order-
ing within the cluster is characterised by averaging ψ

j

6 over
all cluster particles.

III. RESULTS

A. Deformation of the colloidal corral

We have previously suggested that the observation of lo-
cally hexagonal structures within the colloidal corral is due
to boundary adaptivity.38 Here we explicitly show that these
configurations cause significant deformation of the corral wall
compared to concentrically layered structures at similar effec-
tive area fraction and population.

The 27 optical traps defining the corral boundary are
equispaced on a circle, and thus sit at the vertices of a
regular 27-sided polygon, the interior angles of which are
α = 180 − (360/27) = 166.6̇◦. The instantaneous corral
shape is the 27-sided polygon defined by the locations of the
27 optically trapped particles. For an unpopulated corral in
the absence of Brownian motion, this polygon coincides with
the regular 27-sided polygon and thus its interior angles are
all α = 180 − (360/27) = 166.6̇◦. However, since optically
trapped particles are free to explore their local environment
due to Brownian motion, we observe a distribution of inter-
nal angles. By comparing the distribution of α for a populated
corral to that of an unpopulated corral, boundary distortion is
characterised.

Figure 4 shows typical experimentally measured bound-
ary angle distributions, P(α). In Figs. 4(a) and 4(b) the green
line represents this distribution for the unpopulated corral and
is peaked at α ≈ 166◦ as anticipated for a regular 27-sided
polygon. Red and magenta lines in Fig. 4(a) show the in-
ternal angle distributions for low ψ6, concentrically layered
samples in the bistable region (φeff > 0.77). The distribu-
tions show little deviation from the unpopulated distribution,
suggesting that concentrically layered structures cause min-
imal deformation in the corral wall. This is contrasted with
Fig. 4(b) which shows similar data for high ψ6, locally

(a) (b)

j α

j - 1

j + 1

FIG. 4. Experimental boundary angle distributions for samples in the bistable region (φeff > 0.77, population N ≥ 47) corresponding to (a) low ψ6, con-
centrically layered structures and (b) high ψ6 locally hexagonal configurations. Each distribution corresponds to a single experimental sample labelled by the
time-averaged ψ6. Inset in (a) shows a section of the corral wall illustrating that lines joining the centres of adjacent wall particles make an angle α at particle
j. In both panels the green line corresponds to the boundary angle distribution for the unpopulated system.
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hexagonal samples. Here the boundary angle distribution is
qualitatively modified such that it no longer coincides with
the unpopulated distribution, showing that locally hexago-
nal structures result in significant deformation of the corral
boundary. The mean of the distribution is unchanged as the
internal angles of the 27-sided polygon always sum to 4500◦,
but its width and symmetry about this mean are modified
demonstrating that, on average, the corral wall must adopt an
altered shape in order to accommodate a configuration with
strong locally hexagonal ordering.

Distortions to the corral boundary shape are further char-
acterised by considering the second and third moments of the
boundary angle distribution. The second moment, or variance,
characterises the width of a distribution and is defined as

V =
∑

(α − ᾱ)2P (α), (2)

where ᾱ is the mean of P(α) and V has dimensions of de-
grees squared. The third moment, or skew, characterises the
symmetry of a distribution about its mean and is defined as

γ = 1

V 3/2

∑
(α − ᾱ)3P (α) (3)

and is dimensionless.
Figure 5(a) shows the variance and Fig. 5(b) shows the

skew of the experimentally measured corral boundary an-
gle distributions as a function of time-averaged ψ6. Data
are coloured based on the structures identified experimen-
tally with red points representing concentric layering and blue
points representing locally hexagonal configurations. In both
cases, two clouds of data are evident separated by an abrupt
transition at ψ6 ≈ 0.775. Locally hexagonal structures re-
sult in a wider and positively skewed distribution of bound-
ary angles, reinforcing that significant corral deformation is
required for their observation. Here we reiterate that equiva-
lent locally hexagonal structures are not observed in systems
confined by a hard circular boundary, and thus we conclude
that adaptivity or deformability is a requirement for this local
hexagonal ordering that is reminiscent of bulk hard discs.

Despite locally hexagonal configurations deforming the
adaptive wall, the overall elastic energy in the boundary is in
fact reduced when compared to concentrically layered struc-
tures of the same internal population. While hexagonal struc-

tures require a small number of local boundary distortions,
the overall packing density within the corral is increased com-
pared to layered structures meaning that, on average, the cor-
ral can contract and wall particles tend to sit closer to their
optical energy minima. For layered structures, the entire cor-
ral is isotropically stretched, preserving the shape of the wall
angle distribution but increasing the corral radius. This is sup-
ported by our mechanical pressure measurements within the
corral.38

B. Controlling structure in circular confinement

1. The colloidal corral

Local hexagonal ordering in the colloidal corral requires
boundary deformation. A softer wall incurs a smaller ener-
getic cost for a given deformation suggesting that hexagonal
ordering may be more prevalent if the boundary spring con-
stant is reduced. This is considered to be a decrease in the
strictness of the confining geometry. In Monte Carlo simula-
tion, the corral may be defined using arbitrarily high or low
spring constants, facilitating the study of systems that are in-
accessible to experiment.

Figure 6(a) shows the effect of altering this stiffness on
the average ψ6 measured in the simulated confined system
of population N = 49. Increasing the spring constant from
κexp results in the suppression of hexagonal ordering charac-
terised by a decrease in ψ6. Thus, we show that a stiffer or
less adaptive boundary inhibits local hexagonality in systems
confined by a curved wall. As κ → ∞ the adaptive boundary
behaves similarly to a hard wall, and as such the data for high
spring constant are considered as approximating the layering
behaviour expected. The best known packings of monodis-
perse discs within a hard circular boundary for populations in
the range 44 ≤ N ≤ 49, as calculated by Graham et al.,48 have
area fractions in the range 0.78 < φ < 0.791, correspond-
ing to bistable area fractions in the colloidal corral. Hexag-
onal ordering in these best known packings is restricted to
0.4 < ψ6 < 0.6, which is comparable to the degree of hexag-
onal ordering observed in corral simulations with spring con-
stant κ = 20κexp.

(b)(a)

FIG. 5. (a) Variance and (b) skew of experimentally measured corral boundary angle distributions as a function of time-averaged ψ6 for confined populations
44 ≤ N ≤ 49. Red points represent concentrically layered samples and blue points show locally hexagonal configurations. Lines guide the eye, indicating sharp
transitions in variance and skew at ψ6 ≈ 0.775. While the line for γ at ψ6 > 0.775 is drawn horizontally, the data may equally suggest a linear increase in γ

with ψ6 in this region.
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(a) (b)

∞

FIG. 6. (a) Average ψ6 in simulated corral systems of population N = 49 as a function of boundary spring constant, κ (open squares). Spring constants are
given in terms of the experimental spring constant κexp = 302(2) kBT σ−2

eff . Cross at κ = ∞ indicates ψ6 of the best known packing for N = 49 discs in hard
circular confinement.48 (b) Average ψ6 for clusters formed in the optical bowl. Red points represent experimental data, blue points are from Monte Carlo
simulation. Data are averaged over 5 independent simulations or 3 independent experiments. Blue dashed line serves to guide the eye. Uncertainty in ψ6 is the
standard error in the mean. Uncertainty in experimental potential depths is due to matching the experimental potentials to simulated potentials.

Decreasing the spring constant from the experimental
conditions results initially in a small increase in ψ6 coming
to a maximum at κ ≈ 0.5κexp. Further decrease in wall stiff-
ness below κ ≈ 0.5κexp causes ψ6 to again decrease. This
apparent inhibition of hexagonal ordering for very low corral
spring constants is due to expansion of the system. In such
weak parabolic potentials, wall particles can be located a long
way from their energy minima incurring only a small ener-
getic penalty compared to the thermal energy, thus the bound-
ary is unable to maintain the corral interior at high density and
the system expands, resulting in low ψ6.

This pattern of low ψ6 for very weakly and very strongly
defined walls separated by an intermediate region of enhanced
ψ6 for intermediate boundary adaptivities is reminiscent of
the non-monotonic yield often observed in self-assembling
systems.49–51 The quality of assembly is strongly protocol
dependent.52–54 Weak interactions (i.e., very low spring con-
stants) are insufficient to allow self-assembly and strong in-
teractions (i.e., very high spring constants) frustrate ordering,
both of which lead to poor assembly. Good assembly is only
obtained in an intermediate region of interaction strength,
analogous to the observation of highly hexagonal structures
only for intermediate spring constants. Spring constants in
this region result in a corral wall that is sufficiently stiff that
confinement is well-defined but sufficiently adaptive that the
boundary deformation required for locally hexagonal order-
ing is possible.

2. The optical bowl

Comparison is now drawn to the clusters formed in the
optical bowl, confined without a curved boundary. Figure 6(b)
shows the average ψ6 within fully assembled clusters in both
experiment (red points) and simulation (blue points) as a func-
tion of potential depth. Clusters are considered to be fully as-
sembled, when they cease increasing in size. Experimentally,
this occurs within 1 h of assembly. Data are averaged over 5
independent simulations or 3 independent experiments. Con-
sidering initially only the experimental data, it is evident that

increasing potential depth results in increased hexagonal or-
dering. A deeper potential exerts greater gradient forces on
the particles resulting in stronger confinement. However, ex-
perimentally, ψ6 is only observed in the range 0.6 < ψ6 <

0.8—similar to that observed in the colloidal corral.
Monte Carlo simulation allows investigation of experi-

mentally inaccessible potential depths, facilitating arbitrarily
strong confinement in the absence of a physical boundary.
Increasing the potential depth in simulation up to >104kBT
shows that, for sufficiently deep bowl-like potentials, near op-
timal hexagonal ordering is obtained as ψ6 → 1. This repre-
sents an enhancement in locally hexagonal ordering compared
to even the optimally hexagonal corral system. There is no ev-
idence of frustration inhibiting cluster assembly for such deep
potential wells. The implication of this monotonic increase in
ψ6 is that, in the absence of a curved boundary, near perfect
hexagonal ordering is possible in a system of hard discs con-
fined to a circular region.

3. Non-monotonicity

That ψ6 behaves non-monotonically on increasing the
corral spring constant [Fig. 6(a)] but monotonically on in-
creasing the depth of the optical bowl [Fig. 6(b)] is explained
by qualitative differences between the model systems, specif-
ically the absence of a curved wall in the bowl-like poten-
tial well. Increasing the depth of the optical bowl increases
the packing density of particles within the assembled clus-
ters, leading to enhanced hexagonal ordering. The initial in-
crease in ψ6 observed in the corral is due to a similar effect—
a circular wall defined with a low spring constant is unable
to maintain the confined population at high density, and thus
ψ6 is low. Increasing the spring constant contracts the bound-
ary leading to stronger confinement, increased density, and
thus enhanced hexagonal ordering. This dependence of ψ6

on system density is directly related to the behaviour of hard
discs in the bulk28 and is the only effect contributing to struc-
tural ordering in the optical bowl. The non-monotonicity ob-
served for the corral system is due to the interplay of this
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density-driven ordering with a second effect—the inhibition
of hexagonal ordering by a curved boundary. Increasing the
corral spring constant above κ = 0.5κexp results in a decrease
in ψ6 due to the increasing energetic cost of the boundary de-
formations required for hexagonal ordering.

For high spring constant the corral boundary behaves
similarly to a hard, circular wall and as such the observed
structural ordering is compared to the mathematical problem
of packing monodisperse discs into a circular region.33, 48, 55, 56

For the best known packings of identical discs in hard, cir-
cular confinement average ψ6 is restricted to the range 0.4
< ψ6 < 0.6 due to boundary curvature, which is consistent
with ψ6 measured for the highest spring constants consid-
ered. In contrast, the optical bowl is more akin to the gen-
eration of clusters of monodisperse discs by minimising their
second moment about their centroid.57, 58 Such clusters always
show strong locally hexagonal ordering, much like the clus-
ters formed in sufficiently deep bowl-like potentials. There is
no explicitly curved boundary enclosing an energetically flat
interior acting to suppress hexagonal ordering. Similarly, col-
loidal crystals assembled in approximately parabolic poten-
tials in the absence of a physical curved boundary, as reported
by Juárez et al., show a monotonic increase in hexagonality
on increasing the applied voltage.45, 46

C. Tuning structural bistability

For corral confinement under experimental conditions,
structural bistability is observed for φeff � 0.77, correspond-
ing to interior populations N ≥ 47.38 This bistability is char-
acterised by two peaks in the probability distribution of ψ6

corresponding to concentrically layered and locally hexago-
nal structures. Since Fig. 6(a) shows that the degree of hexag-
onal ordering is dependent on boundary adaptivity, it is ex-
pected that altering the spring constant will lead to a change
in this ψ6 probability distribution.

Figure 7 shows ψ6 probability distributions obtained via
Monte Carlo simulation for a range of corral spring con-
stants. The most adaptive boundary considered is defined with
κ = 0.5κexp, corresponding to the maximum in Fig. 6(a). Un-
der these conditions a single peak is observed at ψ6 ≈ 0.9

FIG. 7. ψ6 probability distributions within the colloidal corral at population
N = 47 obtained via Monte Carlo simulation for varying boundary spring
constant. Spring constants are given in terms of the experimental spring con-
stant κexp = 302(2) kBT σ−2

eff .

representing strongly locally hexagonal configurations. As the
spring constant is increased the boundary is less adaptive and
a second peak develops in the vicinity of ψ6 ≈ 0.6, corre-
sponding to concentrically layered structures. This two-peak
distribution represents the structural bistability. As κ is fur-
ther increased the relative heights of these two peaks change.
The high ψ6 peak becomes weaker and the low ψ6 peak
stronger, representing an increased likelihood of observing
the confined system in a concentrically layered configura-
tion. This behaviour is also reflected in the average ψ6 plotted
in Fig. 6(a).

These data suggest that the structural bistability observed
in both simulation and experiment can be tuned via the spring
constant. Thus, the structural ordering of the confined sample
can be controlled by altering the properties of the boundary.
Increasing the spring constant of a corral boundary (e.g., by
increasing the laser power forming the optical traps) confin-
ing a locally hexagonal configuration should drive the interior
population into a concentrically layered structure. Similarly,
decreasing the spring constant confining a concentrically lay-
ered structure should allow local hexagonal ordering in the
corral interior as the energetic cost of boundary deformation
is decreased. Such driving of the bistability in an experimen-
tal system has not yet been attempted. Control over structural
ordering in a confined system by altering the adaptivity of
the boundary represents controlled, wall-induced freezing and
melting.

An example of the temporal fluctuations in ψ6 observed
in the simulated corral at population N = 47 and spring con-
stant κ = 1.3κexp is shown in the inset of Fig. 8(a). By consid-
ering the autocorrelation of these data, C(�t), a characteristic
persistence time for hexagonal ordering is extracted. C(�t) is
defined as

C(�t) = 〈δψ6(τ ) · δψ6(τ + t)〉
〈δψ6(τ ) · δψ6(τ )〉 , (4)

where δψ6(t) = ψ6(t) − 〈ψ6〉 and the angle brackets indi-
cate an average over the time, τ , using data from a single
long trajectory. This autocorrelation is shown in Fig. 8(a)
and is fit with an exponential function of the form
C(�t) ∝ exp (−�t/τ p), where τ p is the persistence time. This
fit yields τ p = 7.1τB.

(a) (b)

FIG. 8. (a) ψ6 autocorrelation for simulated corral at population N = 47
and spring constant κ = 1.3κexp. Red line is an exponential fit to the data.
Inset shows the time-dependence of instantaneous ψ6. Full duration of sim-
ulation is 100000τB. Red line shows location of minimum in P(ψ6) serv-
ing as a threshold between low and high ψ6 states. (b) Probability distribu-
tion for residency time in either state for simulated corral data at population
N = 47 and spring constant κ = 1.3κexp. Red line is a fit of the form P(tR)
∝ (1/tR)exp (−tR/τR). Vertical axis is logarithmic to emphasize the exponen-
tial tail in the data.
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Furthermore, by thresholding the instantaneous ψ6 data
at ψ6 = 0.8, corresponding to the location of the minimum
between the two peaks shown in Fig. 7, and thus identifying
every configuration with either the hexagonal or the layered
state, one can consider the time that elapses between transi-
tions from one state to the other. This is the residency time,
tR. Figure 8(b) shows the probability distribution of this resi-
dency time for the simulated corral at population N = 47 and
spring constant κ = 1.3κexp. The distribution of times spent
in one state before flipping to the other is fit with a function
of the form P(tR) ∝ (1/tR)exp (−tR/τR) as indicated by the red
line. This shows a long-time exponential tail to this distribu-
tion, with a residency timescale τR ≈ 15τB.

Based on a simple model of independent hops between
high ψ6 and low ψ6 states, one expects C(�t) ∝ exp (−(ν1

+ ν2)�t) and P(tR) = (ν1/2)exp (−ν1t) + (ν2/2)exp (−ν2t)
where ν1 and ν2 are the transition rates between states. How-
ever, while this prediction works well for C(�t), it does not
capture the behaviour of P(tR) for small tR. We attribute these
deviations at small tR to fluctuations in ψ6(t) occurring within
a single state, leading to rapid recrossings of the threshold and
enhancing the probability of short residence times. Hence,
considering the behaviour of C(�t) and the long-time expo-
nential decay of P(tR), and noting from Fig. 7 that the high ψ6

and low ψ6 states have similar probabilities for κ = 1.3κexp,
we estimate that the lifetimes of the layered and hexagonal
states are 1/ν1 ≈ 1/ν2 ≈ 15τB.

IV. DISCUSSION AND CONCLUSION

In the bulk, hard disc systems tend to adopt hexago-
nal local structures at high density. Circular confinement
by a hard wall represents the maximally strict circular
confining geometry and strongly inhibits this hexagonal
ordering except in special cases of magic numbers for
confined population.48, 55, 56 In general, a hard circular wall
imposes a concentrically layered structure upon a confined
two-dimensional sample. The colloidal corral model sys-
tem represents a reduction in wall strictness by allowing
deformations of the boundary. We further propose that the
optical bowl represents a minimally strict circular confining
geometry as the confining potential is axisymmetric but there
is no curved wall maintaining the system and inhibiting
hexagonal ordering. The three potentials considered are
depicted in Fig. 9(a). We suggest that these three cases span a
range of wall strictness in which hexagonal ordering becomes
more prevalent as strictness is decreased. This is represented
schematically in Fig. 9(b).

In the presence of a physical curved boundary, locally
hexagonal ordering is only permitted when deformations are
possible, and as such the colloidal corral shows an increase in
ψ6 as its spring constant is reduced and deformations have
a lower energetic cost. However, this relationship is non-
monotonic as a very low spring constant is insufficient to
maintain the confined system at the high density required for
hexagonal configurations. We have shown explicitly that high
ψ6 configurations result in significant distortions to the cor-
ral wall. Furthermore, the bistability between locally hexag-
onal and concentrically layered configurations is sensitively

Bowl Corral Hard
Curved Wall Strictness

(a)

(b)

FIG. 9. (a) Radial cross-section of the potential energy landscape for opti-
cal bowl confinement (blue), adaptive corral confinement (purple), and hard
circular confinement (red). (b) Schematic representation of the effect of the
strictness of a curved wall on hexagonal ordering in circularly symmetric
confinement. The optical bowl (blue) represents minimally strict confine-
ment and allows near perfect hexagonal ordering. Hexagonal ordering in
adaptive corral confinement (purple) is dependent on the deformability of
the wall (assuming system density is maintained), with a stiffer wall rep-
resenting a stricter boundary. A hard circular wall (red) inhibits hexagonal
ordering.

dependent upon the corral spring constant. Altering the spring
constant results in a change in the probability distribution of
ψ6, suggesting that control over boundary stiffness facilitates
the tuning of the observed bistability and the driving of the
system between qualitatively distinct structures.

The bowl-like optical potential confines particles in the
absence of a curved boundary, and thus hexagonal ordering is
not inhibited by curvature. We have shown that ψ6 in clusters
assembled in these potentials increases with potential depth
up to ψ6 ≈ 1, representing perfect hexagonal ordering.

The combined interpretation of these findings is that wall
curvature is the dominant influence in the inhibition of hexag-
onal ordering and that significant locally hexagonal ordering
in confinement requires a reduction of strictness in the bound-
ary. The minimally strict boundary allows perfect hexagonal
ordering for sufficiently strong confinement. Intermediate be-
tween the hard wall and no wall case is adaptive confinement.
We have shown that the degree to which an adaptively con-
fined system can adopt locally hexagonal configurations de-
pends upon the degree to which it can deform its confining
boundary.

That freezing and melting in confined systems can be in-
duced by altering the boundary properties has implications
in creating microscopic reconfigurable devices in which sys-
tem properties are controlled externally. Additionally, adap-
tive boundaries have clear relevance in the modelling of bi-
ological systems in which a densely crowded environment
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is typically enclosed by a flexible membrane.59, 60 That the
structural properties of a crowded system are influenced by
boundary adaptivity offers insight into the behaviour of par-
ticles confined in deformable containers61 such as emulsion
droplets62, 63 or vesicles.64 This heralds new possibilities for
templated assembly65 and the manufacture of mesoscopic
clusters with a variety of structural properties.
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