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We consider a binary Lennard-Jones glassformer whose super-Arrhenius dynamics are correlated
with the formation of icosahedral structures. Upon cooling, these icosahedra organize into meso-
clusters. We recast this glassformer as an effective system of icosahedra which we describe with
a population dynamics model. This model we parameterize with data from the temperature regime
accessible to molecular dynamics simulations. We then use the model to determine the population
of icosahedra in mesoclusters at arbitrary temperature. Using simulation data to incorporate dy-
namics into the model, we predict relaxation behavior at temperatures inaccessible to conventional
approaches. Our model predicts super-Arrhenius dynamics whose relaxation time remains finite for
non-zero temperature. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4938424]

I. INTRODUCTION

Among the challenges of the glass transition is to
understand how solidity emerges with little apparent change
in structure. Indeed, whether the glass transition has a
thermodynamic (implying structural) or dynamical origin
remains unclear.1,2 It has been proposed that upon cooling,
icosahedral arrangements of atoms might form in supercooled
liquids3 and that dynamical arrest may be related to a
(geometrically frustrated) transition to a phase of such
icosahedra.4 It is now possible to identify geometric motifs
such as icosahedra and related locally favored structures
(LFSs) using computer simulation5–15 and particle-resolved
studies in colloid experiments.16–19 Further evidence of
increasing numbers of LFSs upon cooling is also found in
metallic glassformers.20,21

The discovery of dynamic heterogeneity, i.e., locally fast
and slow regions22,23 has spurred attempts to correlate LFS
such as icosahedra with the dynamically slow regions. This has
met with some success;7,8,11–14,24 however, such correlation
does not by itself demonstrate a mechanism for arrest24,25

and in any case is dependent on the model system under
consideration.14 A key limitation here is that direct detection
of LFS and dynamic heterogeneity is only possible in the
first 4-5 decades of dynamic slowing accessible to particle-
resolved experiments on colloids16 and computer simulation.
This compares to 14 decades of slowing corresponding to
the glass transition in molecular systems and divergence
of relaxation time at a putative thermodynamic transition.
Clearly, any discussion of the nature of the glass transition
itself requires extensive extrapolation of data. Significantly,
the limit of this accessible 4-5 decades corresponds roughly
to the mode-coupling temperature TMCT which in d = 3 leads

a)paddy.royall@bristol.ac.uk

to a crossover to a regime where relaxation is believed to
occur in a qualitatively different fashion through cooperative
behavior.2,26,27

Recently, it has become possible to access certain
properties of this deeply supercooled regime. One approach is
to vapor deposit onto a substrate cooled below the temperature
at which the system can usually be equilibrated.28,29

Alternatively, by immobilizing or “pinning” a subset of
particles, a transition to an “ideal glass” can be induced that is
accessible to simulation30,31 and experiments with colloids.32

Other methods include the observation of a transition
in distributions of overlaps in configuration space33,34

and so-called large deviations where trajectory sampling
of moderately supercooled liquids indicates a dynamical
transition to a state rich in LFS with very slow dynamics.35,36

It is also possible to decompose the system into a range of
geometric motifs. Such an approach indicated that there is no
thermodynamic transition.9,10 However, obtaining dynamical
information in the deeply supercooled regime beyond that
accessible to simulation remains a challenge.

Here, we consider a binary Lennard-Jones glassformer
whose dynamics are strongly correlated with LFSs, which
are icosahedra.8,13,14 In particular, the occurrence of super-
Arrhenius dynamics coincides with the emergence of a
population of icosahedra (Figs. 1 and 2).8,13 We build on
this observation and use the population of icosahedra and its
dynamics to predict the behavior in the regime beyond that
accessible to computer simulation. To do this, we introduce
a stochastic model for the population dynamics of icosahedra
which we parameterize in the regime accessible to simulation.
We then use the model to obtain the population of icosahedra
for all temperatures. In the simulation accessible regime,
we show that the population and lifetime of the domains
of icosahedra which we term mesoclusters are correlated
with the super-Arrhenius dynamics. Using the calculated

0021-9606/2015/143(24)/244507/8/$30.00 143, 244507-1 © 2015 AIP Publishing LLC
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FIG. 1. Snapshots showing the simulated system. Large, colored particles
indicate those identified as being part of icosahedra. Small, gray particles are
all other particles. Sizes are not to scale. (a) At high temperatures (T = 1.0),
we see very few, small mesoclusters and (b) at low temperatures (T = 0.58), a
network of very large mesoclusters forms (red particles). These mesoclusters
percolate at around T = 0.6.

population of icosahedra, we predict the dynamical behavior
of the system at all temperatures. In particular, we make
the following assumptions: the dynamical behaviour of the
system is democratically represented by particles in different
sized mesoclusters of icosahedra and those not in icosahedra.
The dynamics of particles not in icosahedra are assumed to
be Arrhenius. The dynamics of particles in mesoclusters are
determined from parameterisation of mesocluster lifetimes
using simulation. The model predicts a super-Arrhenius
dynamics comparable to the simulation data, however it
indicates there is no divergence of the relaxation time at
finite temperature.

Our model captures the super-Arrhenius behavior of the
system with reasonable accuracy. The largest discrepancy
between the predictions of the model and the simulation
data occurs during the first few decades of super-Arrhenius
dynamics around 0.7 & T & 0.6. These first few decades of
arrest are well-described by mode-coupling theory (MCT).
MCT takes as its input two-point correlations. These
are entirely neglected in our analysis which focuses on
higher order correlations, and we attribute the discrepancy
predominantly to our neglect of MCT.

FIG. 2. “Angell” plot of relaxation time as a function of inverse temperature.
Circles: Simulation data. Dashed red line: Arrhenius. Dashed green line:
Population dynamics model prediction. Solid navy line: As described by
geometric frustration.4 Thinner, solid pale blue line: MCT fit to the data across
the region 0.58 ≤T ≤ 1. Thin, solid red line: VFT fit to data T ≤ 1. Inset:
Proportion of particles identified as being part of icosahedra as a function of
temperature. Circles: Simulation data. Solid red line: Fitted model. Simula-
tions are limited to T & 0.56 (blue shaded region indicates inaccessibility).
Black dashed lines correspond to TVFT= 0.456 and TMCT= 0.57.

This paper is divided as follows: we discuss the simulation
details in Section II and describe our model in Section III.
Results are shown in Section IV, and we conclude with a
summary and discussion in Section V.

II. SIMULATION DETAILS

We simulate the Wahnström equimolar additive binary
Lennard-Jones model.37 The size ratio is 5/6 and the well
depth between all species is identical. The mass of the
large particles is twice that of the small. We use molecular
dynamics simulations of N = 1372,10 976,87 808 particles.
We equilibrate for at least 100τα in the NVT ensemble
before sampling in the NVE ensemble. Here, τα is the
structural relaxation time which is determined from a stretched
exponential fit to the intermediate scattering function. We
identify icosahedra with the topological cluster classification
(TCC) and consider those which last longer than 0.1τα (the
distributions of which can be seen in Fig. 3(a)) to suppress the
effects of thermal fluctuations. Our simulation and analysis
protocol are detailed in Refs. 13 and 38.

The Wanström mixture has been shown to crystallise
to a Frank-Kasper phase.39 Indeed, some simulations of
N = 1372 particles crystallised at temperatures T ≤ 0.6;
clearly evidenced by a substantial increase in the population
of icosahedra at fixed temperature. These simulations were
discarded. No crystallisation was observed in the larger
systems.

We plot the structural relaxation time τα with an
Arrhenius form for T & 1 and a Vogel-Fulcher-Tamman
(VFT) form for lower temperatures in Fig. 2. The VFT form
reads τα = τ0 exp[D/(T − T0)], where the fragility parameter
D = 0.799 and the temperature at which our fit predicts a
divergence of τα at a temperature T0 = 0.456. In Fig. 2, we
also indicate the mode-coupling temperature TMCT = 0.57,
fitted across the region 0.58 ≤ T ≤ 1.
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FIG. 3. (a) The radius of gyration for different size mesoclusters (here, size is
determined by number of particles). Data (red crosses) fitted with R2∝ n1/d,
where d is the fractal dimension, and the fitted value 1/d = 0.52; d = 1.92.
(b) Distribution of icosahedra lifetimes for a range of temperatures, scaled by
the Arrhenius time scale, τArr

α .

III. POPULATION DYNAMICS MODEL

In Fig. 1, we see domains of icosahedra which we term
as mesoclusters. We define the size of a mesocluster, m, by
the number of icosahedra that comprise it, i.e., how many
particles found at the center of an icosahedron are contained
in the mesocluster; so, here we only concern ourselves with
m ≥ 1 (m = 0 refers to particles that are not in an icosahedron).

We make the assumption that any change in mesocluster
size is a change in m of ±1. This assumption means that even
large mesoclusters (which in practise might break in two) can
only decrease incrementally. Thus, mesocluster scission, or
indeed coalescence, is not a feature of our model. The rates at
which the mesocluster size increases or decreases are given by
g and r , respectively. The master equation for the population
dynamics model reads

ṗ1 = g0p0 + r2p2 − [g1 + r1]p1,

ṗm = gm−1pm−1 + rm+1pm+1 − [gm + rm]pm,

ṗM = gM−1pM−1 − rMpM, (1)

where pm is the probability that a particle is in a mesocluster
of size m. We set a limit at m = M which is the largest possible
mesocluster that can be formed given the relative population of
particles in icosahedra, φ. Considering geometric frustration,
we expect φ < 1 and set a maximum value for the relative

population φmax = 0.75. This in turn constrains the largest
number of icosahedra in a mesocluster, M . While the
limit of the parameter φ is chosen, rather than determined,
results obtained in the range 0.6 ≤ φmax ≤ 0.9 exhibit only
slight quantitative differences and have no impact on our
conclusions.

The steady state solution for the master equation (solution
when ṗm = 0 for all m) is

pm =
gm−1

rm
pm−1 =

g1 · · · gm−1

r2 · · · rm
p1. (2)

If gm,rm are assumed constant across all m (for a given T),
gm = g, and rm = r , we can denote the ratio as a “decay
parameter” a = g/r . This results in pm = am−1p1, so all pm

can be determined from just two parameters. We imposeM
m=0 pm = 1 and

M
m=1 pm = φ(T), where φ(T) is the expected

proportion of particles to be in icosahedra at that temperature
as shown in the inset of Fig. 2 [and Fig. 5(a)]. In the high
temperature Arrhenius regime T ≥ 1 and at slightly lower
temperatures (T ≥ 0.7), the mesocluster size distribution is
well described by a decaying exponential pm = am−1p1. The
parametrisation is discussed in Section III B.

Upon cooling, at around T ≈ 0.6, the number of
icosahedra is sufficiently large that the mesoclusters form
a percolating network (see Fig. 3; the change in slope
indicates percolation at mesoclusters with &500 particles,
which corresponds to m & 70). Now this percolation does
not correspond to arrest, because the icosahedra have a
limited lifetime.13 Indeed, the Angell plot in Fig. 2 shows
no significant feature when the LFSs begin to percolate.
However, percolation leads to a peak in the mesocluster size
distribution, which necessitates some explicit considerations
for the population dynamics model. We introduce a Gaussian-
like weighting function, Wm(T), to account for the peak that
forms in the distribution when percolation occurs. Wm(T) is a
system-size dependent parameter that controls the location and
width of the distribution peak constrained such that the largest
mesocluster does not exceed M . The steady state solution in
the percolated regime is then pm = a(T)Wm(T)pm−1.

To describe the dynamics, given the population of
icosahedra, we proceed as follows. From the mesocluster
size distributions, we can determine the super-Arrhenius
contribution to τα,

τα = τ
Arr
α


m

lm(T)pm(T). (3)

Here, τArr is the relaxation time assuming Arrhenius
behaviour, extrapolated from the high-temperature T > 1
value. Each icosahedron is categorised according to the largest
mesocluster it joins during its lifetime. The lifetime of an
icosahedron is determined by the amount of (simulation) time
that has elapsed between the first and last instances of an
icosahedron being identified by the TCC. The mesocluster
lifetimes, lm, are the average lifetimes of the icosahedra in the
corresponding size category.

The expression above is based on the following
assumptions: (1) the dynamics of each particle in the system is
represented democratically and (2) particles not in icosahedra
have Arrhenius dynamics. We therefore attribute all super-
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FIG. 4. The parameters (a) k1 and (b) k0 that describe the slope and intercept
(respectively) of the mesocluster lifetimes in the T-dependent regime.

Arrhenius behavior to the emergence of the icosahedra.
As noted above, this is motivated by the correlation
between icosahedra and fragility in model8,15 and metallic
glassformers.40 Given the populations of the mesoclusters as
a function of temperature and extrapolating the dynamical
trends we see, we predict τα at temperatures far beyond those
accessible to simulation (see Fig. 2).

Since the emergence of the population of icosahedra
is associated with super-Arrhenius dynamics, we consider
the dynamical behavior of the system by comparison with
an Arrhenius relaxation time τArr

α which we assume the
system would have if there were no icosahedra to form.
Fig. 3(b) shows the lifetime distribution of all icosahedra
whose lifetimes are ≥0.1τα across a range of temperatures
(0.58 ≤ T ≤ 2.5) scaled by the Arrhenius time scale τArr

α . The
lifetime distributions collapse onto each other at temperatures
T & 1 but spread out at T . 1.

The mesocluster lifetimes are modeled as a function
of size (number of participating icosahedra) for a range of
temperatures. We fit the mesocluster lifetimes with two linear
expressions, a T-dependent expression for small m and a
T-independent expression for large m,

lm =



10k1(T )m+k0(T ) for m ≤ m∗

10h1m+h0 for m > m∗
. (4)

Here, m∗ is the point at which the two expressions are equal,
i.e., the (feasible) solution to (k1(T)m + k0(T)) − (h1m + h0)
= 0 (h0 and h1 are listed in Table I and k0(T) and k1(T)
are plotted in Fig. 4 and described in Sec. III A). At high
temperatures, the mesocluster lifetimes are dominated by the
temperature-dependent expression corresponding to m ≤ m∗.
At low temperatures, the mesoclusters are able to grow large
enough to pass this “threshold” into a regime where the

TABLE I. Fitted parameter values for lifetime model (Eq. (4)).

N h0 h1

1 372 0.023 2 0.3733
10 976 0.003 3 0.8423
87 808 0.000 47 1.2

TABLE II. Fitted values for smoothing function (Eq. (5)) parameters relating
to population model components.

Bi( j) N X Y

Bφ(1/T ) 1 372 1.95 −30
10 976 1.95 −30
87 808 1.9 −30

Ba(T ) 1 372 0.56 50
10 976 0.54 50
87 808 0.55 50

Bµ(φ) 1 372 0.41 −15
10 976 0.42 −12
87 808 0.43 −10

Bσ(φ) 1 372 0.14 5.3
10 976 0.06 20
87 808 0.07 17

BW (m) All 10 0.1

Bg1(T ) All 1.67 −17

mesocluster lifetimes are no longer related to the temperature
and are functions of size only.

A. Mesocluster lifetime parameters

Throughout the model descriptions, we utilise a
smoothing function with the following form:

Bi( j) = 0.5
(
1 + tanh[Y ( j − X)]) , (5)

where i is a function indicator, j is the variable, and X,Y are
fitted values. All functions and values are listed in Table II.

The temperature-dependent regime of the lifetime model
has two parameters described as follows:

k0(T) = d3T−3 + d2T−2 + d1T−1 + d0, (6)

k1(T) =



0.039Bk1(
1
T
) for k0(T) < h0

0 for k0(T) ≥ h0

. (7)

The coefficients for di in the expression for k0 have different
values for the two ranges T > 0.7 and T ≤ 0.7. These are
listed in Table III.

B. Mesocluster population dynamics parameters

Our model for φ is shown in Fig. 5(a) and described as
follows (coefficients di listed in Table IV),

φ(T) = Bφ
( 1
T

)
exp

(
d2T−2 + d1T−1 + d0

)
+ φmax


1 − Bφ

( 1
T

)
, (8)

TABLE III. Fitted parameter values for lifetime model (Eq. (6)).

Region d0 d1 d2 d3

k0(T ),T > 0.7 −1.0256 0.5033 0.0733 0
k0(T ),T ≤ 0.7 −202.77 398.73 −262.4 57.8
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FIG. 5. Data (points) and model descriptions (lines) of (a) the population of
particles in icosahedra, φ and (b) p1. Note that these models are very similar
regardless of system size.

where Bφ(1/T) controls the transition to a plateau. Using
simulation data on the number of particles that comprise a
typical mesocluster of (arbitrary) size m, we infer a linear
relation between the proportion of particles in icosahedra,
φ, and the size of mesocluster that could be formed if all
the particles in icosahedra were to aggregate into a single

TABLE IV. Fitted parameter values for all population model components.

Fctn. N d0 d1 d2 d3

φ(T ) 1 372 −14.706 10.543 −1.696
10 976 −14.922 11.075 −1.938
87 808 −14.697 10.482 −1.627

p1(T ) 1 372 −12.551 1.588 9.737 −4.673
10 976 −12.932 3.053 8.079 −4.109
87 808 −13.366 4.678 6.330 −3.568

a(T ) 1 372 −10.718 13.104 −4.091
10 976 −10.642 12.914 −3.991
87 808 −10.750 13.182 −4.129

µ(φ) 1 372 18.546 −165.35 794.51
10 976 16.780 −99.817 3439
87 808 −173.14 2537 1013.9

σ(φ) 1 372 4.5 0.18
10 976 5.3 0.17
87 808 7 0.1

mesocluster. We use this linear relation as our model for M ,

M(φ) = 1
7.66

(
Nφ − 7.1

)
, (9)

where N is the total number of particles in the system (1372,
10 976, 87 808).

Our model for p1 is shown in Fig. 5(b) and described
below (coefficients di listed in Table IV),

p1(T) = exp
(
d3T−3 + d2T−2 + d1T−1 + d0

)
. (10)

The decay parameter a is plotted in Fig. 6(b) and described as
follows (coefficients di listed in Table IV):

a(T) = Ba(T) exp
(
d2T−2 + d1T−1 + d0

)
+ 0.6

(
1 − Ba(T)

)
, (11)

where Ba(T) is a smoothing function (Eq. (5)).
The maximum in a(T) occurs at percolation. Beyond this

(T . 0.6), the system is dominated by the large percolating
mesocluster (large m) and small-mesocluster (small m)
effects that become increasingly negligible. In this simulation
inaccessible regime, we assign a fixed value to a(T) for
simplicity.

The function Wm(T) has a Gaussian-like form

Wm(T) = 1 + BW(m)Gexp
(
− (m − µ)2

2σ2

)
, (12)

FIG. 6. (a) High temperature data fitted with an exponential decay as de-
scribed in Eq. (2). Model description of (b) the decay parameter, (c) the
peak location (“mean” mesocluster size) parameter, µ, and (d) peak width
(“standard deviation”) parameter, σ, for different system sizes.
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where µ and σ are temperature-dependent parameters that
control the location and width of the peak in the distribution,
and G is chosen for each T in order to satisfy

M
m=1 pm = φ(T).

The parameters µ and σ only apply to T < 0.7 and are only
defined in this range.

The parameters µ and σ are plotted in Figs. 6(c) and 6(d)
respectively and given by (coefficients di listed in Table IV)

µ(φ) = Bµ(φ)
(
d2φ

2 + d1φ + d0

)
+

(0.75N − 7.1
7.66

) (
1 − Bµ(φ)

)
, (13)

σ(φ) = exp
(
d0Bσ(φ) + d1

)
, (14)

with smoothing functions Bµ(φ) and Bσ(φ), and N the total
number of particles in the system.

IV. RESULTS

Our approach is based on the observation that at high
temperature, there is Arrhenius behavior in the dynamics and
very few icosahedra, but at the onset temperature (Ton ≈ 113),
there is a crossover to super-Arrhenius behavior which is
accompanied by the emergence of a population of icosahedra
found in mesoclusters which grows upon supercooling.7,8,13

These two dynamical regimes are indicated in the Angell plot
in Fig. 2 and the population of icosahedra is shown in the
inset.

Motivated by these observations, we propose that the
correlation between icosahedra and super-Arrhenius dynamics
continues to lower temperature. This gives us a means to
predict the relaxation behavior of the system at arbitrary
temperature under the assumptions made in constructing the
model (Section III). The dynamical behavior is predicted
from measurements of cluster lifetimes. The global dynamical
behavior is shown in the Angell plot in Fig. 2 and discussed
in Section V. Below we consider some further dynamical
features of the model.

In Fig. 7(a), we compare the results of the population
dynamics model (pm = a(T)Wm(T)pm−1) for the size distri-
bution of mesoclusters with simulation data. In the inset, we
show the predicted mesocluster distributions for temperatures
inaccessible to simulations. The population distribution model
results for different system sizes at a fixed temperature
(T = 0.58) are shown in Fig. 7(b). Larger systems allow
for larger mesoclusters, resulting in the location of the peak
having system-size dependence. However, the systems still
percolate at the same temperature (T ≈ 0.6).

In the simulation accessible regime, we can directly
measure the dynamical properties of the mesoclusters. These
are shown in Fig. 8(a) which plot the mean lifetime
of icosahedra as a function of mesocluster size. This
increases strongly with m, while retaining some temperature
dependence. The mesocluster lifetime model [Eq. (4)] for
different system sizes (for fixed T = 0.58) is shown in
Fig. 8(b). This shows the behaviour of the model predictions.
Note the cusp-like feature shown in this log-log representation
which is due to the meeting point m∗ between the functions
for large and small m in Eq. (4) is described in Section III.

FIG. 7. (a) Mesocluster probability distributions. Simulation data (points) fit-
ted with the probability model (lines) as described in Equation (1). Inset: The
predicted distributions for some temperatures inaccessible to simulations. (b)
The probability distribution for different system sizes at a fixed temperature
(T = 0.58). The decay parameter is almost unchanged across system sizes, but
µ,σ, and consequently pm have strong system size dependence. However,
note that the distribution shapes are, approximately, compressed/stretched
versions of each other.

The mesocluster lifetimes differ with system size
which we explain as follows. Let us assume that in the
thermodynamic limit, each mesocluster size has a fixed
lifetime. We imagine that in a simulation box, percolating
mesoclusters of a given size correspond to a distribution of
larger mesoclusters in the thermodynamic limit, rather than
being a fixed size. So, in the thermodynamic limit, these larger
mesoclusters would have a distribution of lifetimes, but here
we assign a single lifetime for each sampled size. Crucially,
this effect varies with system size.

In Fig. 9, we show the structural relaxation time our model
predicts for different system sizes across the whole range of T
(Eq. (3)). Despite the strong system size dependence in both
the mesocluster population distributions and lifetimes, the
resulting relaxation times are scarcely effected by the system
size.

V. SUMMARY AND DISCUSSION

We have presented an approach to predict the dynamics
of a glass forming liquid at arbitrary temperatures. This we
have done by decomposing a model glassformer into an
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FIG. 8. (a) Mesocluster lifetimes. Simulation data (points) fitted with the
lifetime model (lines) as described in Equation (4). Small mesoclusters (lower
values of m) have highly T -dependent lifetimes, but at some large enough
mesocluster size, the lifetimes become T -independent and are determined
only by the mesocluster size. Inset: The predicted mesocluster lifetimes for
some temperatures inaccessible to simulations. (b) The resulting lifetime
model for a fixed temperature, T = 0.58, for different system sizes. The
sudden increase in slope in (b) occurs at the point m∗, where the T-dependent
description crosses to the T-independent curve.

effective system of mesoclusters of locally favored structures
whose population is described by a population dynamics
model which we parameterize with results from simulations.
The lifetime of mesoclusters of LFS are also parameterized

FIG. 9. The α relaxation time as predicted by the population dynamics model
across the three different system sizes. The system size dependence in pm and
lm produces only very minor differences to the model τα.

with simulations. Under the assumptions above and that the
super-Arrhenius dynamics can be attributed to the population
of particles in mesoclusters of icosahedra, our model predicts
dynamical behaviour at arbitrary temperature. In its present
form, the model predicts that there is no thermodynamic
glass transition. We have considered different system sizes
and find that while the population and lifetime components of
the model are strongly system size dependent, the resulting
relaxation time is scarcely dependent on system size.

Whether or not there is a thermodynamic transition, in
the sense of a divergence in relaxation time scales at finite
temperature, boils down to whether the lifetime of icosahedra
in mesoclusters, lm, diverges. In Fig. 8(a), we see that it
does not. Although our data are compatible with dynamical
divergence of lm, — that is to say lm can be fitted in the
regime accessible to simulation such that it diverges at finite
temperature — better fits are obtained with non-divergent
behaviour.

Now since the population dynamics model itself does not
exhibit a phase transition, perhaps one could argue that it is
natural that we do not find a divergence in relaxation time.
One might imagine that population dynamics models in which
a phase transition is encountered would lead to dynamical
divergence.41 It is also possible that further refinement may
fit the relaxation time data better than our current approach
[Fig. 2], which might provide further insight into the question
as to whether there is a thermodynamic glass transition. At
this stage, we observe that our model which predicts no
thermodynamic transition actually over-estimates the super-
Arrhenius nature of the dynamics. This would lend support to
the observation that within this framework, there should be no
transition as also found in other treatments of LFS.4,9,10

We also plot in Fig. 2 predications from geometric
frustration.4 Here τα(T) = τ∞ exp (∆E∗(T) + E∞/kBT), where
E∞ is the Arrhenius contribution. Below the onset temperature
Ton, the super-Arrhenius contribution ∆E = 0, for T < Ton,
∆E(T) = BkBTc

(
1 − T

Ton

)ψ
, where B = 650, ψ = 8/3, and

Tc = 0.65. We see that the results, also predicated on
icosahedra, seem to describe the dynamical behavior in a
similar way to our model. It is possible that certain aspects of
geometric frustration are captured by our approach.

One explanation for the rather strong increase in τα
exhibited in Fig. 2 might be that our model does not
include mesocluster scission or coalescence, because the
mesocluster size increases/decreases only by one. Larger
changes in mesocluster size might lead to closer agreement
with simulation data, but would not change the picture in
a qualitative fashion. System sizes for simulations which
represent certain properties of deeply supercooled systems are
small,33,35,36 but it is tantalizing to consider parameterizing
the model with such data. Alternatively, one can consider how
the network geometry might be influenced by certain scaling
properties near an assumed transition.42

Our model underestimates the initial increase in structural
relaxation time in the dynamical regime where it is well
described by MCT (Fig. 2). It is tempting to suggest that this
is related to our emphasis on icosahedra in describing the
dynamical slowdown. In the temperature regime in question,
LFSs (icosahedra) are relatively few in number and there is
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no percolating network. Moreover, it is possible that in this
regime, dynamical slowdown may be dominated by lower-
order correlations such as the 2-body and 3-body. These
arguments are supported by Banerjee et al.43 and Nandi et al.44

who have suggested that two-point based relaxation times
strongly increase before higher-order contributions. In Fig. 2,
we show the MCT fit which describes the simulation data
accurately for 0.7 & T & 0.6 but diverges at TMCT = 0.57.45

One imagines that better agreement might be obtained by
including contributions from MCT in this dynamical range,
noting that these can be systematically extended at least to
4th order.46 At deeper supercoolings where MCT diverges,
our population dynamics model presumably captures other
dominant relaxation pathways absent from MCT,27 at least for
the Wahnström model. Thus, it is in the deeply supercooled
regime beyond MCT whose dynamics remain inaccessible
to the particle-resolved techniques of computer simulation
and colloid experiment where our approach has the most
to contribute. Other possibilities to explain the discrepancy
at weak supercooling (T > TMCT) include amorphous order
distinct from icosahedra. The correlation of the dynamics
with the icosahedra is high in the Wahnström model, but it
is not perfect.14 Considerations from other work24,47 suggest
that other contributions from the structure may also contribute
to the dynamics.20

Before closing, we comment on the generality of our
results. Recently,14 a number of models have been compared.
Of those, the Wahnström model considered here exhibits the
strongest correlations between structure and dynamics, so one
might expect this to be most likely to exhibit a structure-based
transition at finite temperature. That our analysis hints towards
no such transition therefore suggests the same should hold
at least for the range of models considered.14 Our approach
may also be used to optimise metallic glassformers such as
CuxZr1−x. Like the Wahnström model, these materials are
well known to exhibit correlations between non-Arrhenius
dynamics and the emergence of icosahedra.21 These models
also exhibit networks of icosahedra, whose emergence seems
similarly related to the crossover to super-Arrhenius dynamics
as the Wahnström model we consider.48,49
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