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Abstract
We investigate experimentally the relationship between local structure and dynamical arrest in
a quasi-2d colloidal model system which approximates hard discs. We introduce
polydispersity to the system to suppress crystallisation. Upon compression, the increase in
structural relaxation time is accompanied by the emergence of local hexagonal symmetry.
Examining the dynamical heterogeneity of the system, we identify three types of motion:
‘zero-dimensional’ corresponding to β-relaxation, ‘one-dimensional’ or stringlike motion and
‘2D’ motion. The dynamic heterogeneity is correlated with the local order, that is to say
locally hexagonal regions are more likely to be dynamically slow. However, we find that
lengthscales corresponding to dynamic heterogeneity and local structure do not appear to scale
together approaching the glass transition.

Keywords: dynamical heterogeneity, colloidal glasses, 2D colloids

(Some figures may appear in colour only in the online journal)

1. Introduction

Identifying the nature of the glass transition is one of the
major challenges in condensed matter physics. A number
of theoretical approaches have been advanced [1, 2], but
obtaining data which enables discrimination between these is
challenging, not least because the timescales for equilibration
would diverge at any transition. Broadly there are two schools
of thought: either the glass transition is connected to an
underlying thermodynamic singularity to an ‘ideal glass’ or
its origin is predominantly dynamical. Some theories of the
‘thermodynamic’ standpoint envisage a transition to a state
rich in certain geometric motifs [3], somewhat reminiscent of
crystallisation, however the local structures formed do not tile
Euclidean space [4].

Here we shall be concerned with supercooled liquids
whose relaxation we can identify on the experimental timescale
rather than solid (nonequilibrium) glasses. Among the
more striking observations in supercooled liquids is that
of dynamic heterogeneity where spatio-temporal fluctuations

in dynamics indicate that some parts of the system are—
transiently—more solid-like that others. Originally identified
in computer simulation [5, 6] and indirectly observed in
molecular experiment [7, 8], dynamic heterogeneity was later
directly observed in colloidal experiments [9–11]. The latter
technique, which we employ here, is a powerful means of
investigating the local properties of glassforming systems
[12–14].

Regarding the nature of the glass transition, strong
evidence has been presented that the super-Arrhenius increase
in structural relaxation times manifested in supercooled liquids
necessitates some kind of change in structure [15]. Although
two-point measures such as the radial distribution functiong(r)

and its reciprocal space counterpart the static structure factor
show little change on approach to the glass transition [16, 17],
in recent years through use of higher-order structural measures,
considerable evidence in support of a change in structure
approaching the glass transition has emerged [17–32]. Many
of these studies have shown that dynamically slow regions
(i.e. those which are more ‘solid’) are correlated with certain
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structural motifs. However correlations between structure and
dynamics do not necessarily demonstrate that this change in
structure is the cause of the slow dynamics [27]. Support
for the thermodynamic viewpoint which relates structure
and dynamic arrest would come from growing structure
correlation lengths, especially if these grew concurrently with
lengthscales related to dynamic heterogeneity. Different
means to obtain a structural length have been investigated in
detail [19, 24, 28–30, 32–36]. These and other approaches to
determine lengthscales, both static and dynamic, have recently
been reviewed by Karmakar et al [37] to which we direct the
interested reader. In summary, there is as yet no conclusive
outcome. Although a number of groups, particularly in
dimension d = 3, have found that dynamic lengths (usually
manifested in the so-called four-point dynamical correlation
length ξ4 [38]) increase much faster than structural lengths
approaching dynamical arrest [17, 21, 27, 29, 30, 32, 36, 39],
some have found that ξ4 does scale with structural lengths
[23, 25, 26, 34, 35].

In two dimensions, the situation with local structural
motifs in the liquid is rather special. This is because, unlike
the five-fold symmetric icosahedra and variants encountered
in 3d, in 2d simple liquids the local structural motif is the
hexagon which does tile the (Euclidean) space. Thus there
is no inherent geometric frustration in two dimensions. As
a consequence it is hard to prepare supercooled liquids and
indeed the freezing transition of hard discs has a very different
nature in 2d compared to 3d in that it is only weakly first order
[40, 41]. Thus to form a supercooled liquid which is stable on
all but the shortest timescales one must introduce frustration,
either by curving space [25, 26, 42], introducing many-
body interactions which suppress the inherent hexagonal local
symmetry [19] or by using multicomponent or polydisperse
systems [34, 35, 39, 43–45]. Unlike their 3d counterparts, 2d
systems have been shown to exhibit long-ranged hexagonal
order which may be treated in a simple way with a two-state
model [46]. However, questions remain concerning the case
of 2d systems. In particular, the range of static correlation
lengths implied in a thermodynamic viewpoint for the glass
transition is intimately related to the degree of frustration.
In particular more strongly frustrated systems have much
shorter structural correlation lengths [25, 26, 34, 39]. This
opens questions about how closely large structural correlation
lengths of hexagonal order might be related to crystallisation.
Furthermore, some studies indicate that dynamic correlation
lengths may be decoupled from structural lengths especially
in the case of higher polydispersity (strong frustration) [39].

Here we use a quasi-2d model colloidal system to
investigate the role of local structure in 2d supercooled liquids.
We have conducted experiments by optical microscopy, to
image structure and dynamics in ‘real’ space; we have chosen
to work with mixtures of colloidal particles around a few
micrometers in diameter, which are large enough not just to
resolve each one individually and know its position to high
precision, but also to assign its size and thus be able to
check against size segregation. A limitation of this choice
is that it is challenging to resolve equilibration timescales for
relaxation of collective structures, which would be too long-
lived. Previous experimental work in aging (non-equilibrium)

systems has shown an intriguing connection between local
hexagonal symmetry and dynamics [43]. Our interest here
is in the supercooled liquid where we focus on local structure
and probe the question of increasing lengthscales approaching
the glass transition.

This paper is organised as follows. In section 2 we
describe our methodology. In the results (section 3) we first
discuss the dynamical behaviour of the system, before moving
to the local structure. We then consider correlations between
structure and dynamics and the emergence of lengthscales in
the system as it approaches arrest. In the final section 4 we
offer our conclusions.

2. Materials and methods

2.1. Colloidal dispersions preparation

Our quasi-2d model system consists of monolayers of poly-
disperse hard-sphere colloidal particles in water. Dispersions
with 2% by weight of particles in Milli-Q water are pre-
pared with three kinds of silica particles from Bangs Lab-
oratories (species A with diameter σA = 3.01 µm, species
B with σB = 3.47 µm and species C with σC = 3.93 µm).
To obtain samples with various polydispersity, several disper-
sions are prepared by mixing particles with different combi-
nations (species A and B, species A and C, species A and
B and C). In our system, the gravitational length scaled by
the particle size is λg/σ = 0.00976 for the smallest particles
(σA = 3.01 µm) and correspondingly smaller for the larger
particles. We thus conclude that thermal fluctuations out of
plane are small relative to the particle size and are henceforth
neglected, so we consider our experiments to behave as a 2d
system. We neglect any nonaddivity effects due to the differ-
ent particle sizes as these are expected to be very slight for our
parameters [47].

2.2. Assembling the particle monolayer

Quasi-2d monolayers are prepared in a cell built from a
microscope slide and a cover slip. First microscope slides
and cover slips are cleaned with water and detergent to make
the surface hydrophobic and to prevent particles from sticking
to it. The cell is prepared by sticking together a cover slip
and a microscope slide with two pieces of Parafilm slightly
heated on a heater plate and cut as shown in figure 1(a). In this
way a chamber with two open channels is formed between
the microscope slide and the cover slip. The chamber is
filled injecting the particle dispersion with a micropipette in
the proximity of one of the two channels. After this, the
channels are sealed with ultra high vacuum grease. Samples
are observed as shown in figure 1(b). In this way, particles
settle on the cover slip due to gravity forming a planar layer. By
injecting dispersions prepared by mixing particles of species
A, B and C with different compositions and concentrations,
we obtain monolayers with various polydispersity and various
area fractions.
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Figure 1. Experiments allow tracking and identifying size of particles in dense 2d systems. (a), (b) Schematic view of the experimental
set-up. The sample cell showed in (a) is built with a microscope slide and a cover slip stuck together with two pieces of Parafilm such that a
chamber with two open channels is formed. This is filled with the particle dispersion and sealed. Samples are observed with an inverted
microscope, so that particles sediment to form a monolayer (b). (c) Crop of one image acquired focusing the particle equator. The particle
contour is clearly visible, as well as the inter-particles spaces. When a second layer is present, particles in the second plane have a clear
optical signature, as highlighted by the red circle. (d) The same image segmented and thresholded; white pixels reproduce the particle shape
and black pixels are the interstices. When one particle in an extra-layer is present, the black pixels of the interstices are not visible as shown
in the red circle. (e) Crop of an image acquired focusing on the particle poles so that particles appear as bright dots in a dark background,
greatly facilitating tracking. (f ) The position of each particle is tracked during time and the particle trajectories are visualized in red.

2.3. Imaging

A Leica DMI6000 Inverted Microscope, with a 63x HCX
PL FLUOTAR oil-immersion objective, is used in brightfield
mode to visualize the monolayers. For each sample, two
acquisition methods are used. First, one image with size
512×512 pixel (1 pixel corresponding to 0.24 µm) is recorded
on a camera (Leica DFC350-FX) focusing on the particles’
equators. Figure 1(c) is a crop of an image acquired with
this method. The particle contours are clearly visible, as
well as the interstices, so that we can be sure particles are
dispersed in a monolayer. When one particle in a second layer
is present, it has a clear optical signature, as highlighted by
the red circle in figure 1(c). Here we take care only to analyse
data where the particles are strictly in a monolayer. With the
second acquisition method, focus is on the particle poles and
particles appear as bright dots in a dark background. Acquired
images have size 512 × 512 pixels and a cropped image is
shown in figure 1(e). With this configuration, series of 250,
500 or 1000 images are recorded at 1 fps, so that the sample
evolution in time is monitored for an interval that goes from
250 s to about 17 minutes, depending on the experiment. With
both acquisition methods, in a given image between 950 and
1350 particles are observed, depending on the sample area
fraction.

2.4. Particle tracking

In figure 1(e), we see that, with the second acquisition method,
particles appear as bright dots in a dark background. Using
such images it is possible to follow the evolution of the position

�xi(t) of the center of each particle in time, by tracking the
position of the white spots. These series of images are analysed
using software developed in house for correlation filtering
and sub-pixel resolution of particle positions [48, 49]. The
software recognizes the particle positions in each frame of a
series, identified as a red point in figure 1(f ), where complete
trajectories are overlapped to the initial image of the series. In
certain samples some collective drift is observed. The drift is
removed in the data processing so that the position of the ith
particle at the time t is

�Xi (t) = �xi (t) − 〈�xi(t)〉i + 〈�xi(0)〉i (1)

where �xi(0) is the ith particle initial position and 〈...〉i is the
average on all the particles tracked in one image. In the rest of
this paper, trajectories and all the related quantities are given
after drift subtraction.

2.5. Characterization

Images taken with the first acquisition method figure 1(c) can
be converted into black and white images figure 1(d) where
white pixels reproduce the particle’s shape and black pixels are
the interstices. Black and white images are used to quantify
the sample packing fraction φ and polydispersity s. We define
the area fraction as the ratio between the number of white
pixels and the number of pixels of an image. As shown in
figure 1(d), the different particle sizes present in a monolayer
are clearly distinguished and this allows us to identify the
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(a) (b)

Figure 2. The system relaxation time can be obtained for most samples. (a) Intermediate scattering function versus time for four
representative samples: φ = 0.610 and s = 10%; φ = 0.707 and s = 11%; φ = 0.760 and s = 11%; φ = 0.822 and s = 11%.
Experimental data are fitted with F(q, t) = C exp[(−t/τα)

β ] (dashed lines). (b) System relaxation time τα , obtained from the fit of F(q, t),
versus the area fraction φ. The dashed line is a fit according to the Vogel–Fulcher–Tamman form equation (4).

sample polydispersity as defined by:

s =
√

〈σ 2〉species − 〈σ 〉2
species

〈σ 〉species
, (2)

where 〈σ 〉species is the average diameter of the different species
A, B and C present in the sample. Forty samples with particle
packing fractions between 0.610 and 0.822 and polydispersity
between s = 7% and 13% are considered in our dataset.

The particles are expected to behave as strongly screened
charged colloids which are a reasonable model for hard spheres
(and here hard discs) [50]. We estimate the interparticle
interactions as follows. An approximation to the upper bound
of the (effective) colloid charge Z is to set ZλB/σ = 6 [50],
where σ is the particle diameter and λB the Bjerrum length.
For our parameters this yields an effective charge number of
Z = 2.97 × 104. We suppose the ionic strength is dominated
by the counterions and that these are confined to a layer whose
height is equal to the mean particle diameter 3.47 µm. In the
solvent the ionic strength is then 2.58 mMol which corresponds
to a Debye length ofκ−1 = 270 nm. The dimensionless inverse
Debye length κσ = 12.8 (taking σ = 3.47 µm). For these
parameters reasonably hard-disc like behaviour is expected.

3. Results

3.1. Dynamics

To characterise the dynamical behaviour of the sample we
determine the intermediate scattering function (ISF) and the
mean-squared displacement. The former quantity we use
to characterise the global dynamics of the system, the latter
provides a convenient measure of the dynamics at the particle
level. We begin by discussing the ISF and the overall dynamics.
To calculate the ISF, we Fourier transform images with eight
periodic neighbours in a square lattice. We then consider
a ring with internal radius 41 − 7 pixels and external radius
41 + 7 pixels, where 41 pixels is the position of the first peak

of the structure factor. We then carried out a pixel by pixel
autocorrelation in time, and averaged over all these pixels.
These we plot in figure 2(a). At high area fractions, our ISFs
do not fully decay (to get full decay over longer timescales,
one needs much smaller particles [51], which would prevent
the other measurements we do in this work). We fit throughout
with a stretched exponential form

F(q, t) = C exp

(−t

τα

)β

, (3)

where C � 1 and β � 1 and τα is the structural relaxation time.
We plot these structural relaxation times as a function of area
fraction φ in the ‘Angell plot’ in figure 2(b). The experimental
values are then fitted with a Vogel–Fulcher–Tamman [1, 2]
form

τα(φ) = τ0 exp

(
D

φ0 − φ

)
, (4)

where we obtain φ0 = 0.838 for the divergence of the structural
relaxation time and D = 0.225 for the fragility parameter.
These values are comparable to those found in the computer
simulation literature [34, 39]. Thus our system exhibits the
slow dynamics typical of a model glassformer.

3.2. Polydispersity and mean-squared displacement

The samples analysed for this work are plotted in a
polydispersity s vs area fraction φ state diagram describing
the sample dynamics (figure 3(a)).

The dynamics of the ith particle can be characterized by
measuring its mean-squared displacement, defined as the time
average:

〈 �X2
i (τ )〉 = 〈( �Xi(t + τ) − �Xi(t))

2〉t . (5)

This quantity characterizes the kind of motion exhibited by the
particle, allowing one to distinguish between free Brownian
motion, where mean-squared displacement (MSD) is linear in
τ , from confined motion where the square displacement grows
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Figure 3. With increasing density, dynamics slows down and order sets in; this is quantified here and resolved versus the sample
polydispersity. (a) MSD for τ = 240 s as a function of φ. Values are taken from the 〈 �X2(τ )〉 of each sample. Error bars represent the
standard deviation of the distributions. Inset: mean-squared displacement vs τ for four representative samples: (♦) φ = 0.610 and
s = 10%; (◦◦) φ = 0.760; s = 11%; (�): φ = 0.822 and s = 11%); black dots represent the MSD of a dilute state point (φ = 0.168).
(b) State diagram s vs φ, describing the sample dynamics. To define the dynamics of each sample we consider the sample mean-squared
displacement MSD for τ = 240 s showed in (a). (c) Sample averaged 	6 as a function of φ for the forty investigated samples. Error bars
represent the standard deviation of the 	6 distributions; note the increase in 	6 with density, and also more interestingly the emergence of
heterogeneity. (d) State diagram s vs φ, showing the sample averaged 	6. In (b) and (d), the dashed lines are at φ = 0.716, which is
expected from simulations to be the hexatic/solid transition in 2D monodisperse colloidal systems [40].

sublinearly or even plateaus at large τ . By computing the
sample MSD as an average of 〈 �X2

i (τ )〉 on all the particles of
one image, we can investigate the global dynamics of each
sample. Representative mean-squared displacement data as
a function of τ are shown in the inset of figure 3(a) for
different sample packing fractions. For the monodisperse
sample of particles with σB = 3.93 µm, at low density
(φ = 0.168), the MSD is linear in τ , as expected in diluted
samples; in two dimensions one has 〈 �X2(τ )〉 = 4Dτ (where
D is the diffusion coefficient), and by fitting that dataset
D = 0.6 ∗ 10−13 m2 s−1. The Stokes–Einstein coefficient,
defined as DSE = kBT/3πησB (with kB Boltzmann constant,
T temperature of the system and η water viscosity), for our
particles is DSE = 1.16 × 10−13 m2 s−1. If particles diffuse
close to a surface, as in our case, the diffusion is slowed
down by approximately a factor of up to 3 compared to bulk
diffusion [52], so the value of D we find from the fit is in
agreement with the expected value. The MSD for a sample
with φ = 0.610 is becoming sublinear. For the sample with

φ = 0.760 the sublinearity is evident and, increasing again the
packing fraction (φ = 0.822), the MSD shows a plateau.

To discriminate between different dynamics and build the
s vs φ state diagram presented in figure 3(b), we use the value
of MSD at the time lag τ = 240 s (i.e. 〈 �X2(240 s)〉) which
is shown in figure 3(a) as a function of the packing fraction.
Error bars represent the standard deviation of the 〈 �X2

i (240 s)〉
distributions (note: this distribution widens as heterogeneity
emerges, and then narrows at high concentration). In
figure 3(a) marker color represents the values of 〈 �X2(240 s)〉,
consistently with the colors used in figure 3(b). It is evident
that the dynamics slows down for samples with higher packing
fraction. Moreover, looking at figure 3(b), samples with a
smaller s (7%) seem to reach the arrested state at lower φ and
this is in agreement with the fact that polydispersity delays
the slowing down which might be related to the fact that
random close packing occurs at a higher φ in the case of higher
polydispersity [53]. It is clear that in our polydisperse systems
the dynamics is not totally slowed down even beyond the value
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of φ for which a monodisperse system would be solid, see
dashed lines in figures 3(b) and (d), at φ = 0.716 [40].

A second s vs φ state diagram is shown in figure 3(d).
Here data are coloured according to the mean structural
characteristic in the sample (colormap in figure 3(c)). In
disordered granular systems [44] and colloidal glasses [28]
long-lived (relative to τα) medium-range crystalline regions
have been found. To investigate the local structure we use the
bond-orientational order parameter defined for each particle
j as

ψ
j

6 =
∣∣∣ 1

nj

∑
k

exp (i6θjk)

∣∣∣, (6)

where the sum runs over the nj nearest neighbours of the
particle and θjk is the angle between �rk − �rj and a fixed
arbitrary axis. Nearest neighbours are identified by a Voronoi
construction. Hereafter, we use 	

j

6 = 〈ψj

6 〉t , where the time
average of the order parameter is computed on a given number
of frames from the beginning of the acquisition. When the
particle j is in a locally hexagonal configuration 	

j

6 = 1.
The more 	

j

6 tends to zero, the more the particle is in a
disordered region. If 	

j

6 is averaged over all the particles
of each sample, we have the parameter 	6 = 〈	j

6 〉j to define
the degree of order in a sample. In figure 3(c) 	6 is plotted
as a function of φ; error bars represent the standard deviation
of the 	6 distribution and the same color code is used for
the state diagram in figure 3(d). The formation of order is
favoured upon compression, and the value of 	6 for the range
of sample packing fraction used in our experiments, increases
from around 0.5 to 0.85, indicating that none of the samples is
crystalline.

By comparing the two state diagrams (figures 3(b) and
(d)) the slowing down and the formation of order are more
evident for high sample packing fraction and their appearance
is slowed by polydispersity. According to this observation
slowing down and order are related and this is consistent
with previous observations in computer simulation [34] and
experiment [44, 54].

3.3. Particle trajectories and dynamic heterogeneity

The appearance of confined motion is not homogeneous in the
sample, but rather heterogeneity in the dynamics is visible,
as already observed in several disordered granular [44, 45]
and colloidal [9–11, 28] systems. With our experiments, we
can investigate the time-evolution of the heterogeneity. We
consider the sample with φ = 0.760 and s = 11%, and
in figure 4 we present the particle trajectories plotted over
intervals of 0.3τα (a), τα (b), 2.3τα (c), 4.3τα (d). At short
intervals, all the particles exhibit confined motion and no
significant dynamic heterogeneity is visible; at timescales
approaching τα , dynamic heterogeneity starts to appear and
becomes more evident at even longer time intervals. If
we consider the path traveled by particles over 4.3τα , we
can clearly distinguish three different motions: a ‘zero-
dimensional’ motion (the classical β-relaxation) of particles
with very confined trajectories (as for example in the region
highlighted by the circle), a ‘1D’ (or string-like [11, 55, 56])

cooperative motion given by ‘chains’ of particles moving
together (square) following a linear trajectory (not necessarily
in the same direction; we see curved or apparently random
walks, etc), a ‘2D’ motion given by regions of particles moving
together in a preferential direction (rectangle). Although
dynamic heterogeneity has been repeatedly observed in
experiments and simulations of 2D disordered systems, ‘2D’
motion of regions of particles moving together has received
relatively little attention. It is clear that the dynamic
heterogeneity appears with increasing interval; in particular,
the ‘zero-dimensional’ motion is the first one to be visible,
while the ‘2D’ motion is the last.

We investigated further the spatial structure of the high-
mobility regions, as defined for different waiting times. For a
given sample, the particle displacements at different intervals
(between 0.01τα and 4.5τα) are considered; the 20% of
particles with largest displacements are selected. These
particles are divided in eight sets, according to the direction
of displacement (displacements are represented by color, in
figures 4(e) and (f )). When four or more particles have the
same direction of motion and are close to each other, we
consider this a ‘2d region’; this is a raft, formed of particles
moving in the same direction. These regions are highlighted in
white, in figure 4(f ). The remaining of the 20% fast particles
are either isolated, or belong to a dimer or trimer cluster of
particles with same direction. We highlight the dimers and
trimers in figure 4(e). It is clear, looking at the cluster structure
in figure 4(e), that these dimers and trimers often join together,
to form more extended string-like trajectories. This analysis
is, empirically, a simple way to isolate strings from rafts: we
define A1D the total white area in figure 4(e), and A2D the
total white area in figure 4(f ) (both are normalized with the
particle area Ap). These areas have a clear dependence on
the time interval considered: as a function of t/τα , figure 4(g)
(φ = 0.760 and s = 11%, i.e. the same sample of (a), (b),
(c) and (d)) shows a decrease of 1d motion and an increase of
2d motion. The trend is robust, and strongest for high density,
as shown in figure 4(h), where A1D/A2D is plotted for five
samples with φ = 0.61, 0.707, 0.76, 0.788, 0.792) (these are
the same samples analysed in figures 5 and 6).

Regarding the time-evolution of the dimensionality of the
motion, it is well-known [16, 17] that quantities such as the
so-called dynamic susceptibility display a characteristic peak
around τα before dying away. This is often interpreted in
that dynamically heterogeneous regions have fewer particles
at short times, more around τα and that the magnitude of
the dynamical fluctuations dies away at long times. Our
interpretation is that this may be related to the dimensionality
in the 0d motion involves little movement at short times,
1d motion is related to smaller number of particles and
the 2d motion corresponds to the larger groups of particles
involved in dynamic heterogeneity at longer times. Further
observations have recently been made indicating that a
key source of dynamic heterogeneity at longer times is
‘hydrodynamic’ density fluctuations which spread slowly
through the supercooled liquid [57] which would correspond
to our 2d regions.
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Figure 4. Particle trajectories are uniform at short time intervals, but spatially heterogeneous over longer intervals. Shown here are tracks
over 0.3τα (a), τα (b), 2.3τα (c), 4.3τα (d), measured from the beginning of the acquisition, for the sample with φ = 0.760 and s = 11%.
Trajectories are overlapped to the initial image of the series (black spots represent the particle centers). Particles on the border are not
considered in our analysis. The shapes in panel (d) highlight regions of interesting collective motion, which are discussed in the text. At
sufficiently long time intervals, the particles that have high absolute displacement, and share a common direction, cluster close to each other;
this is shown in panel (e), highlighting the particle clusters of size 2 and 3, and panel (f ) highlighting the clusters of 4 and particles and
above. (e, f ) are derived from the same waiting time and sample shown in (d). As discussed in the text, we see that high mobility string-like
regions emerge in (e), and 2D raft-like regions emerge in (f ) (an example of each is highlighted by a rectangle). The area occupied by these
thresholded fractions (the clusters) depends on the waiting time: the 1d string-fraction falls, while the 2d raft-like increases with time
interval (g). The ratio of these fractions has clear trends with the particle density (h).

Figure 5. The degree of orientational order is uniform at lower density, but develops long range correlations increasing the concentration.
Images show color-maps of the bond-orientational order parameter 	6, each circle represents a particle, centered on its initial position, for
three samples: (a) φ = 0.610 and s = 10%, (b) φ = 0.707 and s = 11%, (c) φ = 0.760 and s = 11%. The 	6 is time-averaged over a time
interval τα , from the beginning of the acquisition. 	6 values are divided in ten intervals, each of which is identified by a color as shown in
the legend.

3.4. Local structure

To investigate regions with hexagonal order in our samples, we
use the bond-orientational order parameter 	6. In particular,
we calculate the time average of the order parameter 	

j

6 =
〈ψj

6 〉t over a time corresponding to τα , in order to detect
long-lived ordered regions. 	6 color-maps can be used to
visualise the presence of ordered and disordered regions in
our samples: In figure 5 we present such color-maps of the
bond-orientational order parameter 	6 per particle for four
samples with comparable polydispersity: (a) φ = 0.610 and

s = 10%, (b) φ = 0.707 and s = 11%, (c) φ = 0.760 and
s = 11%. 	6 is time-averaged over an interval τα , where τα is
4.5 s for sample (a), 16 s for sample (b) and 104 s for sample
(c). The 	6 value of a given particle is represented by a colour-
coded circle; circles are overlapped to the initial state of the
system (black spots are the particles). In the less concentrated
sample (figure 5(a)) the bond-orientational order parameter
is relatively homogeneous and most of the particles have a
	6 value between 0.3 and 0.7, with the 	6 value distribution
centred in 0.5. We can say that the sample is totally disordered
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and no ordered regions are present. For the sample with
φ = 0.707 (figure 5(b)) the 	6 value distribution is centred
in 0.6 and significantly ordered regions with 	6 between 0.7
and 0.9 appear (orange disks). The sample structure starts
to be quite heterogeneous, since regions of particles with 	6

value higher than 0.7 appears. Increasing the area fraction
further to 0.760 (figure 5(c)), regions with 	6 value between
0.7 and 0.9 start to have a considerable size, comprising tens
of particles. Regions with 	6 between 0.9 and 1 appear. The
sample structural heterogeneity is significant.

Note that working with these relatively large colloidal
particle sizes allows us to check the size of each particle, and
hence the local polydispersity. This is an interesting check,
especially on the regions of high angular order, to verify that
these are not linked to some chance or induced monodisperse
patch. Considering the 21 particles with high 	6 (red disks)
on the bottom left of figure 5(c), polydispersity is s = 13%;
including the adjacent 21 orange disks on their right, s = 12%.
These are essentially the same as the average over this sample,
which is s = 11%.

3.5. Correlation of dynamics and structure

By comparing the state diagrams in figures 3(b) and (d), it
is clear that the slowing down and the formation of sixfold
order are more evident for high area fraction. Investigating the
particle trajectories (figure 4), we have seen the development
of dynamic heterogeneity. In the same way, at high φ long-
lived regions with hexagonal structural order are visible in
the globally amorphous system. According to this, we may
expect that slowing down, dynamic heterogeneity and order
are related.

To explore the correlation between these three properties,
we first compare the trajectories of each particle in a sample
with their MSD and their 	6. We show in figure 6 three
samples, with increasing densities going down the rows. In
the first column, the particle trajectories are plotted over an
interval of 450 s (4.3τα); In the second column, the particle
directions of motion are represented as vectors joining the
position of each particle across the interval of 450 s (4.3τα),
coloured according to the direction (the Cartesian directions
are indicated by the coloured arrows on the top-right of the
column). The third column illustrates via a colour map the
spatial distribution of 〈 �X2(450 s)〉 (colour code at the top of
the column, note intervals are logarithmically spaced). The
rightmost column shows the spatial distribution of 	

j

6 time-
averaged over the same interval (colour code on the top: red
points represent particles with 0.9 � 	

j

6 � 1, violet points
represent particles with 0 � 	

j

6 < 0.1). The second and third
rows contain the matching information, for higher densities
(0.788 and 0.792), and here the 450 s of time interval and
averaging correspond to 3τα and 1.9τα respectively. In all
cases, the time interval considered is > τα . In the MSD
and 	6 maps in figure 6, the directions of motion are shown
overlapped.

Observing the trajectories of the lower concentration
sample (panels (c, d)) we see that the three different kinds of
motion mentioned above are present: the ‘zero-dimensional’

motion of particles with very confined trajectories; the ‘one-
dimensional’ motion given by ‘chains’ of particles moving
together in a preferential direction; the ‘2D’ motion given by
regions of particles moving together in a preferential direction.
Particles with the ‘one-dimensional’ motion have a large MSD
and they seem to belong to both ordered and disordered regions.
In the region highlighted by the square, particles have a
confined motion, a low MSD and they belong to an ordered
region, since their 	

j

6 is larger than 0.8. But if we consider the
particles in the circle, they have always a confined motion and
a low MSD, but they are in a disordered region with 	

j

6 that
goes from 0.3 to 1, depending on the particle. In the rectangle,
particles show a ‘2D’ motion: they are moving together in the
up-left direction, but with different MSD and with 	

j

6 between
0.4 and 1.

Another example of clear ‘2D’ motion of particles is in
the sample with φ = 0.788 and s = 8%, shown in the middle
row of figure 6. Particles in the circle are moving together in
the up-left direction, with different MSD and they are part of
an ordered region, since their 	

j

6 is larger than 0.8. Particles in
the square are moving together in the up-right direction, with
different MSD but in this case they are part of a disordered
region, since their 	

j

6 is between 0.3 and 1, depending on the
particle. From figure 6(f ), it seems that the sample is formed
by regions of particles moving in a given direction and that
the regions together are following an hexagonal path. This
observation is evident in the bottom panels of figure 6, showing
the sample with φ = 0.792 and s = 9%. In the bottom-
right part of figure 6(j ), particles are moving anticlockwise
following an hexagonal path. The center of rotation is indicated
by the black circle. In figure 6(k) a net difference in the MSD
between particles belonging to the rotating region and particles
with a confined motion is visible. One may suppose that the
hexagonal path is linked to the hexagonal crystal lattice present
in the ordered region, but by looking at the 	

j

6 colour map in
figure 6(l), it is clear that the rotating region is not a unique
hexagonal crystal.

By comparing the 	
j

6 colour maps with the particle
trajectories or the MSD colour maps, some colocalisation
between the dynamic heterogeneity and order is visible. To
investigate further, we consider the histograms in figure 7
representing the fraction of particles with a given 	6 between
the 20% of the faster particles (blue line) and the fraction of
particles with a given 	6 between the 20% of the slowest
particles (red line). The four histograms correspond to:
(a) φ = 0.610 and s = 10%; (b) φ = 0.707 and s = 11%;
(c) φ = 0.760 and s = 11% and (d) φ = 0.802 and
s = 11%. At low packing fraction, the fraction of particles
with a given 	6 is the same for both fast and slow particles
and the distributions are centred on 	6 = 0.5. Increasing φ,
the fraction of slow particles with 	6 > 0.8 is slightly bigger
than that for fast particles. For φ = 0.760 the fraction of slow
particles with 	6 > 0.8 is significantly bigger then for fast
particles and in the most deeply supercooled sample almost all
the slow particles has a big value of 	6, since more then the
70% have 	6 > 0.8, while the distribution of fast particles
is centred in 0.6 < 	6 < 0.7. From these histograms it
is evident that slow particles belong preferentially to ordered
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Figure 6. There are correlations between the directionality, the absolute mobility and the local order around particles. Top row: sample with
φ = 0.760 and s = 11%. Middle row: φ = 0.788 and s = 8%. Bottom row: φ = 0.792 and s = 9%. First column: particle trajectories
plotted for a time of 450 s, which corresponds to 4.3τα (a), t = 3τα (e), and t = 1.9τα (i); second column: particle directions of motion
represented as displacement vectors joining the position of each particle across an interval of 450 s and coloured according to the direction
(the main four directions are indicated by the coloured arrows on the top-right of the picture); third column: colour map of the MSD per
particle at the time lag τ = 450 s (colour code on the top; intervals are logarithmically spaced); right column: colour map of 	

j

6

time-averaged over 450 s (colour code on the top). The displacement vectors showed are overlapped to the colour maps of MSD and 	
j

6 .

regions and that the slowing down of the dynamics is connected
to the formation of long-lived medium-range crystalline order.

Similar results are valid for the samples investigated in
our experiments for which we can calculate the MSD at τα

(〈 �X2
i (τα)〉). In figure 7(e) markers represent the fraction of

particles with low order, 	6 < 0.5, between the 20% of the
fastest and slowest particles. To discriminate between fast
and slow particles, we consider their 〈 �X2

i (τα)〉. In figure 7(f )
markers represent the fraction of particles with high order,
	6 > 0.8, within the 20% of the fastest and slowest particles
for all the φ considered. The data of figure 7(e) show that
the fraction of fast particles with 	6 < 0.5 is larger than
the fraction of slow particles for all the samples, whereas the
data of figure 7(f ) show that the fraction of fast particles with
	6 > 0.8 is significantly smaller than the fraction of slow
particles for all the considered samples.

3.6. Structural lengthscales

We now turn to a topic which we raised in the introduction:
the structural and dynamic lengths approaching the glass
transion. We compute correlation lengths corresponding to
two structural quantities. The first is the density–density
correlation length. Although this has been relatively little-
explored in the context of glassforming systems, it is well-
known in the study of critical phenomena [58]. We determine
the density–density correlation length ξ by fitting y(r) =
Ar−1/4 exp(−r/ξ) to h(r) = log(r | g(r)−1 |), examples are
shown in figure 8(a). We also obtain the correlation length of
local six-fold symmetry in a manner similar to that of Kawasaki
and Tanaka [34]. We obtain the bond-orientational correlation
function g6(r) = 〈Re[	∗

6 (�r ′)	6(�r ′ + �r)]〉 by multiplying 	6

(complex) of a particle by the 	∗
6 (complex conjugates) of all
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Figure 7. Increasing density, structural and dynamic heterogeneity both develop, and they are co-localised. Histograms representing the
fraction of particles with a given 	6 between the 20% of the faster particles (blue line) and the fraction of particles with a given 	6 between
the 20% of the slowest particles (red line). To discriminate between fast and slow particles, we consider their 〈 �X2

i (τα)〉. The four histograms
correspond to: (a) φ = 0.610 and s = 10%; (b) φ = 0.707 and s = 11%; (c) φ = 0.760 and s = 11%; (d) φ = 0.802 and s = 11%. (e)
Markers represent (•) the fraction of particles with 	6 < 0.5 between the 20% of the faster particles; (�) the fraction of particles with
	6 < 0.5 between the 20% of the slowest particles. Points are plotted versus φ for the samples for which we can compute 〈 �X2(τα)〉. (f )
Markers represent (•) the fraction of particles with 	6 > 0.8 between the 20% of the faster particles; (�) the fraction of particles with
	6 > 0.8 between the 20% of the slowest particles. Data is plotted versus φ, for all the samples for which we can compute 〈 �X2(τα)〉.

Figure 8. Structural and dynamical lengthscales can be measured; when compared to each other, they exhibit different qualitative behaviour
as a function of density. (a) h(r) = log(r | g(r) − 1 |) plotted versus r normalized by the average particles diameter σ for four
representative samples: sample with φ = 0.610 and s = 10%; sample with φ = 0.707 and s = 11%; sample with φ = 0.760 and s = 11%;
sample with φ = 0.822 and s = 11%. Dashed lines are the linear fit of the h(r) peaks. The inverse of the line slope gives the correlation
length ξ ; these are plotted in (b) versus φ, normalized by the average particle diameter σ . ξ is compared with the g6(r)/g(r) correlation
length ξ6, with the dynamic correlation length ξD from gD(r)/g(r) and with the correlation length ξ4 from literature. The red, blue and
green lines in (b) are guides to the eye given by data interpolation.

the other particles in the sample at a given distance. We then
plot g6(r)/g(r) and fit the peaks with y(r) = Ar−1/4e−r/ξ6 .

Our data runs for insufficient time to accurately determine
ξ4 (which we take from the literature for a comparable
system [39]). However we employ an approach related to
that above to obtain a dynamic length. We define gD(r) =

〈log[ �X2(τα, �r ′))] log[ �X2(τα, �r ′+�r)]〉. We then plot gD(r)/g(r)

and fit peaks as for the structural lengths ξ and ξ6.
In figure 8(b) we show these correlation lengths. We find

that the density–density correlation length ξ exceeds the static
ξ6, but both exhibit similar weak φ behaviour. Interestingly,
the dynamic correlation length determined here ξD actually
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exhibits very similar behaviour to ξ4. A direct comparison
between our ξD and ξ4 determined from the same data would
be very helpful, but for now we cautiously note that ξD appears
to provide a reasonable description of the range of correlated
dynamics. What is evident is that the ‘dynamic’ lengthscales
grows qualitatively differently from the ‘static’ lengths, and
we elaborate on the significance of this below.

4. Conclusions

We have studied the dynamics and its relation to the
local structure in a quasi 2d colloidal model system
where crystallisation is frustrated by polydispersity. Upon
compression local hexagonal order is apparent, and the system
becomes more ordered at deeper supercooling. Dynamic
heterogeneity is observed and there is some correlation
between particles with local hexagonal order and dynamically
slow particles. We further investigate the development of
the lengthscales associated with both dynamic and structural
quantities. Both increase upon supercooling, however
dynamic lengthscales seem to increase rather more than do
structural lengthscales. Concerning comparable hard disc
systems, our findings are consistent with some previous
computer simulation work [39] but not with others [25, 26, 34,
35]. However we note that our decision to use large colloids
means our waiting times are somewhat limited. Thus we
cannot rule out that longer equilibration times might change
our results and we suggest that this point should be checked
carefully in the future. In 3d, a number of studies have
found that dynamic lengthscales increase faster than structural
lengthscales [21, 27, 29, 30, 32, 36] but some suggest that both
scale together [23, 35]. We should like to emphasise that the
structural correlation length ξ obtained purely from two-point
correlations does show an increase comparable to that extracted
from the higher-order bond-orientational order parameter.
This suggests that it might be possible to investigate structural
correlation lengths in certain molecular and atomic systems
(for example metallic glassformers and oxides) in which high-
precision two-point structural data is available [59].

The discrepancy between the dynamic lengths we
have found and the structural lengths has three possible
explanations. Firstly, local structure may be largely unrelated
to the slow dynamics as assumed in the dynamic facilitation
approach [60]. The second possibility is that the dynamic
correlation lengths measured are somehow not representative
of the slow dynamics. The third possibility is to note that here,
as in all particle-resolved work both experimental (colloids or
granular media) and computational, the degree of supercooling
is too limited to access the kind of growth in lengthcsales
associated with a close approach to any transition [17].
In particular the timescales we access approach the mode-
coupling crossover and at deeper supercoolings different
scaling behaviour may be encountered. Some evidence for
the third possibility has recently been presented [61, 62].
Furthermore indirect measurements of dynamic correlation
lengths obtained from a variety of experiments on molecular
glassformers whose (relative) relaxation time is some ten
decades slower than particle-resolved studies access slow

dynamic correlation lengths comparable to those we measure
here [63–67]. We thus hope that our work has gone some way
to contributing to the debate on whether (local) structure may
be related to dynamical arrest.

We have identified different forms of motion at similar
state points. Such considerations have received some attention
via the string-like motion [55] and broken bond [56] concepts.
Within the framework of Random First-Order Transition
(RFOT) Theory [68], one expects a crossover to more
compact and less stringlike mobile regions at very deep
supercooling [69]. Consistent with this suggestion, a reduction
in certain measures of the dynamical correlation length
at supercooling around the mode-coupling transition [61].
However later work with the more often used ξ4 dynamic
correlation length found no such reduction around the mode-
coupling transition, rather a crossover to slower growth [62].
The ‘2D’ motion we have identified here would correspond
to a smaller dynamic correlation length for a given number
of dynamically correlated particles. Tempting as it might be
to draw analogies with the predictions of RFOT theory [69],
we caution that our work only accesses relatively mild
supercooling, up to around the mode-coupling crossover.
The change in fractal dimension of dynamically fast regions
envisaged by Stevenson et al [69] corresponds to deeper
supercooling than we access here. Overall we believe
our observation of different classes of motion discussed
in section 3.5 proposes an avenue that might be further
investigated. We emphasise that not all motion takes the same
form, here we have observed one and 2D motion.
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