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For binary fluid mixtures of spherical particles in which the two species are sufficiently different
in size, the dominant wavelength of oscillations of the pair correlation functions is predicted to
change from roughly the diameter of the large species to that of the small species along a sharp
crossover line in the phase diagram [C. Grodon et al., J. Chem. Phys. 121, 7869 (2004)]. Using
particle-resolved colloid experiments in 3d we demonstrate that crossover exists and that its location
in the phase diagram is in quantitative agreement with the results of both theory and our Monte-Carlo
simulations. In contrast with previous work [J. Baumgartl et al., Phys. Rev. Lett. 98, 198303
(2007)], where a correspondence was drawn between crossover and percolation of both species,
in our 3d study we find that structural crossover is unrelated to percolation. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4945808]

I. INTRODUCTION

Among the most striking occurrences in everyday life
are phase transitions.1 The familiar phase boundaries that
delineate solids, liquids, and gases are, of course, associated
with non-analyticities of the free energy. However, there
are other lines in the phase diagram where structural
characteristics of the material change abruptly. For example, in
one-component fluids the Fisher-Widom line distinguishes the
region where the density-density (pair) correlation function
exhibits damped oscillatory decay at large separations,
characteristic of dense liquids, from that where the decay is
monotonic, characteristic of gases and near critical fluids.2,3 In
nature most materials are mixtures and increasing the number
of components (species) leads to increasingly rich phase
behaviour that is accompanied by further crossover lines. The
most basic structural crossover in a binary mixture is predicted
to occur when the dominant wavelength of oscillations in the
pair correlation functions changes, from big to small, upon
changing the composition;4,5 this crossover is amenable to
experimental investigation and is the subject of our study.

The binary hard sphere model is the key reference system
for a simple liquid mixture, i.e., a mixture of two species of
atoms or small molecules, since the structure of such mixtures
is determined primarily by the repulsive forces acting between
the atoms and these can be approximated by hard spheres.6

At longer length scales, binary mixtures of colloidal particles
immersed in a solvent can be prepared for which the effective
colloidal interactions are, to an good approximation, hard
sphere-like.7 Here we investigate such a colloidal system,
using particle-resolved studies to extract pair-correlation
functions,8–10 and test theoretical and simulation predictions4,5

for fundamental features of the structure of binary mixtures.

We focus on a hard sphere mixture of big (b) and
small (s) particles, characterized by the size ratio q = σs/σb,
where σb > σs denote the hard sphere diameters, and the
packing (or volume) fractions ηs and ηb. The existence of
two length scales, associated with the two diameters, points
to the possibility of physical phenomena associated with
competition between these. In the supercooled liquid, this
competition can be used to suppress crystalisation.11 In the
hard sphere crystalline state this competition gives rise to a
wide variety of different phases, characterized by different
crystal structures.12–16

In the fluid state the competition leads to structural
crossover revealed by considering the asymptotic decay,
r → ∞, of the primary structural indicator, the pair correlation
function gi j(r) between species i and j. The gi j(r) are,
of course, determined by the interaction potentials and a
powerful means of analysing the nature of their decay is via a
pole analysis of the Ornstein-Zernike (OZ) equations of liquid
state theory.17 We know from very general considerations
of the mixture OZ equations in Fourier space17,18 that for
short-ranged interparticle potentials the ultimate decay of all
three pair correlation functions gbb(r), gbs(r) and gss(r) will
be exponentially damped oscillatory with a common decay
length α−1

0 ≡ ξ the true correlation length of the mixture and
a common oscillatory wavelength 2π/α1.19 Specifically we
expect the total correlation functions hi j(r) = gi j(r) − 1 to
decay as

rhi j(r) ≡ r(gi j(r) − 1) ∼ Ai je−α0r cos(α1r − θi j), (1)

for r → ∞ with i, j = b, s. Only the amplitudes Ai j and the
phases θi j are species dependent and there are symmetry
relations between these.19 Equation (1) is a single pole
approximation to the pair correlation functions: α0 and α1
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are the imaginary and real parts of the leading order pole(s) of
the partial structure factors Si j(k), determined as the complex
root k = α1 + iα0 of the equation

D(k) ≡ [1 − ρsĉss(k)][1 − ρbĉbb(k)] − ρsρbĉbs(k)2 = 0 (2)

having the smallest imaginary part α0. D(k) is the common
denominator entering the mixture OZ equations: ĉi j(k) is the
Fourier transform of the i j pair direct correlation function and
ρs,ρb are the number densities of the two species.19

Consider now a mixture at a large packing fraction ηb
and small ηs. Intuitively, we expect the (common) wavelength
of the oscillations to be approximately the diameter of the
big species. On the other hand, when ηb is small and ηs is
large the wavelength should be approximately the diameter
of the smaller species. These observations are supported by
theory and simulation.4,5 Suppose now we prepare mixtures at
different compositions. What physics determines the crossover
from oscillations with the wavelength σb to those with
wavelength σs? Is there a sharp line, in the ηs versus ηb
phase diagram, delineating a structural crossover whereby
the wavelength of the longest ranged oscillations changes
discontinuously?

Theory, based on a general pole analysis of the OZ
equations, points to a sharp structural crossover line and for
(additive) hard spheres the line has been calculated explicitly
within the Percus-Yevick (PY) and Density Functional Theory
(DFT) approximations.4,5 By sharp crossover we mean there is
a line in the phase diagram where the wavelength of the slowest
oscillatory decay of gi j(r) switches discontinuously from one
value to another. Although the gi j(r) obtained from Monte
Carlo (MC) simulations of hard spheres in 3 dimensions4 and
of hard discs in 2 dimensions5 are close to those from theory,
simple visual inspection of gi j(r) is not sufficient to confirm
a sharp crossover. In fact we shall show that demonstrating a
sharp crossover requires determination of α0 and α1 in Eq. (1)
in order to demonstrate a (sharp) change in the leading order
pole controlling asymptotic behavior. While particle resolved
experiments on mixtures have been performed previously,8,9

obtaining the level of accuracy sufficient for the pole analysis
is challenging.8,20 Here we show that it is possible to apply
this pole analysis to experimental data and thereby provide
compelling experimental evidence for a sharp crossover. We
emphasize that the prediction of a sharp structural crossover
transition is in no sense particular to hard spheres; it should
be found for a very wide class of mixtures where the two
species are of different sizes and the interparticle forces are
short-ranged.21

Significantly the same general argument for crossover
pertains for a confined binary mixture, where one expects
to see manifestations of structural crossover in the
oscillatory (solvation) force arising from confinement between
substrates,5 and for the oscillatory one-body density profiles
at interfaces.5,19 Specifically, the same (true) correlation
length 1/α0 and wavelength 2π/α1 appearing in Eq. (1)
also determine the asymptotic decay of the solvation force
and the density profiles. This connection has been addressed,
in the context of confinement, in AFM experiments on one-
component nanoparticles22,23 and, in the context of interfacial
layering, for ionic liquids at sapphire substrates.24 We also

note that the true correlation length is important in current
research on the glass transition.25

A previous study, carried out by Baumgartl et al.,26 on
a binary mixture of small and big colloidal particles with
size ratio q = 0.61 provided some evidence for structural
crossover and attempted to relate crossover to the sizes
of networks containing connected big or connected small
particles. However, Ref. 26 could image only the first 2d
colloidal layer next to the bottom wall of the sample and
data analysis was performed from a 2d perspective. Moreover
the pole analysis mentioned above was not employed so the
authors were not able to ascertain the nature of crossover.26 A
later x-ray diffraction and microscopy study on monolayers of
bimodal nanoparticles reported packing structures resembling
what might be expected for structural crossover.27

In contrast, our present study employs 3d confocal
microscopy combined with 3d MC simulations and liquid
state theory for hard spheres to investigate the nature of the
crossover. The paper is arranged as follows: in Section II we
provide details of the experiments. Section III describes results
for the asymptotic decay of h(r) in a one-component colloidal
system where we demonstrate that the inverse correlation
length α0 and the wavelength 2π/α1 can be determined from
experiment, showing that a pole analysis of experimental
and simulation data is feasible. In Section IV we present
results for the binary system. Section IV A describes hi j(r)
as measured in experiment and in simulation. In Section IV B
we fit both sets of data to a two-pole generalization of
Eq. (1) and show that both have the same pole structure as
in PY approximation for hard sphere mixtures. It follows
that our binary colloidal mixtures should exhibit the same
sharp structural crossover. In Section IV C we show that for
the parameters of our experiments and simulations structural
crossover is not related to the size of networks of big and
small particles, i.e., to percolation of one or other species.

II. EXPERIMENTAL

We used a Leica SP5 confocal microscope fitted with a
resonant scanner. The colloids were suspended in a solvent
mixture chosen to match the density and refractive index
of the polymethyl methacrylate particles. In order to screen
any residual electrostatic interactions, tetra-butylammonium
bromide salt was added to the cyclohexyl bromide-cis-decalin
solvent. A borosilicate glass square capillary with internal
dimensions of 0.50 × 0.50 mm and glass thickness of 0.10 mm
was filled with the suspensions and sealed at each end with
epoxy glue to prevent evaporation.

In our study of the pair correlation function of a one-
component system three different sizes of PMMA particles
were used. One set had a diameter σ of 3.23 µm and
6% polydispersity (determined with SEM). Samples were
prepared at η = 0.587 and η = 0.593. The second set, with
2.9 µm diameter and 5% polydispersity were prepared at
the packing fraction η = 0.561. Samples with the lowest
packing fractions, η = 0.496 and η = 0.365, were prepared
using particles of size 1.88 µm and 5% polydispersity.

Binary mixtures of polymethylmethacrylate (PMMA)
particles of diameter 2.9 µm and 1.88 µm were prepared at
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FIG. 1. (a) Pair correlation functions gbb(r ) measured for the big colloids at ηs = 0.39,ηb = 0.09 (1), ηs = 0.16,ηb = 0.31 (2), and ηs = 0.09,ηb = 0.415 (3).
Data offset for clarity. Corresponding confocal images of the mixture of red (2.9 µm) and green (1.88 µm) colloids are shown. The scale bar indicates 19 µm.
(b) Packing fractions in the (ηb,ηs)-plane at which experiments (triangles) and hard sphere simulations (circles) are performed. The size ratio q = 0.648 and
the total packing fraction ηtot=ηs+ηb is roughly 0.5. The line is the crossover-line calculated from PY approximation which terminates at ηb ≈ 0.12.4 Above
this line the gi j(r ) show oscillations with wavelength ∼σs, and below this line the wavelength is ∼σb. We expect to find crossover on the experimental and
simulation paths near their intersection with the PY crossover-line.

different densities as shown in Fig. 1(b). The particle size and
polydispersity were determined using static light scattering
and the polydispersity was 5%. We note that the effects of
polydispersity were examined in the DFT study by Grodon
et al. who found that for a rather broad bimodal distribution
of diameters a clear signature of crossover was present — see
Figs. 8 and 9 of Ref. 5. For a binary mixture the coordinates
of the two different particle species are tracked separately
and the overlaps between the two different particle types are
removed afterwards. From the coordinates of the colloids,
the pair correlation functions gi j(r) can be determined. An
example is shown for gbb(r) in Fig. 1(a).

III. ASYMPTOTIC DECAY IN THE ONE-COMPONENT
SYSTEM

As it can be challenging to determine directly the packing
fraction η in experiments,7,20 we fit the Fourier transform of the

hard sphere structure factor, given by the PY approximation,17

to the first two maxima in g(r) as obtained from the confocal
microscopy measurements. This procedure yields the values
of η given in Fig. 2(a).28 Experimental results for the decay
of h(r) are shown in Fig. 2(a) where the black lines are fits of
these data to the equation

rh(r) ∼ Ae−α0r cos(α1r − θ), r → ∞ (3)

which is the one-component version of Eq. (1). In this equation
α0 and α1 are the imaginary and real parts of the leading order
pole of the structure factor. The poles are given by the complex
roots of

1 − ρĉ(k) = 0, (4)

where ĉ(k) is the Fourier transform of the pair direct
correlation function at number density ρ. There is an infinite
number of poles and the leading order pole k = α1 + iα0
is that with the smallest imaginary part α0, closest to the

FIG. 2. Plots of ln |rh(r )| for a one component colloidal liquid for several packing fractions η as indicated: (a) experiment (b) simulations of the hard sphere
fluid. The curves are shifted vertically for clarity. The black lines are fits to Eq. (3) for the total correlation function h(r ), from which α0 and α1 are determined.
(c) Comparison of the values of α0 and α1 calculated from the experimental results (triangles) and from simulations (circles) and the PY approximation (line) for
the one component hard sphere fluid. The experimental results pertain to the five values of η given in (a). Simulation results cover the range from red η = 0.37
to blue η = 0.57. The PY result corresponds to the leading order pole for the hard sphere fluid, plotted from η = 0.35 to η = 0.62.
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real axis. Equation (3) is a single-pole approximation that
retains only the slowest decaying contribution to h(r).3,17,19

Fits were performed over the region 1.5 < r/σ < 4.0 as the
data becomes noisier at larger distances r . We see that the
fits are rather good and allow us to determine reliable values
for α0, the inverse of the true correlation length, and for the
wavelength 2π/α1. The resulting values of α0 and α1 are
plotted, as triangles, in Fig. 2(c) for five values of η. As η
increases, α0 decreases and α1 increases until we reach a value
of η ∼ 0.54 beyond which α0 appears to stay roughly constant
while α1 continues to increase. These results show that it is
possible to extract accurate α0 and α1 and thus to apply the
pole analysis to experimental data.

In Fig. 2(b) we present results for ln |rh(r)| from MC
simulations of a one-component hard sphere liquid. These
were carried out in the NVT ensemble in a cubic box of
side roughly 20σ. Recall that pure hard spheres undergo an
equilibrium freezing transition to an fcc crystal at η = 0.492.29

Thus for several of the packing fractions we consider, and, in
particular, for η larger than about 0.54, the hard sphere fluid
may start to crystallise during the simulation. We took care
that any runs which did indeed crystallise were excluded from
our analysis, by using the averaged bond orientational order
parameters q̄4 and q̄6 to identify crystallisation.30 It follows
that the range of simulation times, and also the maximum
packing fraction, are limited. The black lines are a fit to
Eq. (3), now over the larger range 1.5 < r/σ < 5.5. The fit
is excellent for all values of η investigated and the resulting
values for α0 and α1 are plotted as circles in Fig. 2(c). These
follow closely the trend of the experimental results and show
α0 flattening off for the largest values of η considered.

It is important to recall that Eq. (3) is valid for the
long range decay of h(r) and therefore we cannot expect
that the first two maxima are well-matched by this single
pole approximation. The plots in Fig. 2(a) show this to
be the case. However, as predicted by the early theoretical
work, Eq. (3) provides a remarkably good fit for both
experimental and simulation data at intermediate distances,

i.e., separations r as low as second nearest neighbours. As
we shall see below, the same conclusion holds for the single
pole approximation Eq. (1) pertinent to binary mixtures,
provided the state point is away from crossover. The line in
Fig. 2(c) corresponds to α0 and α1 calculated from the leading
order pole of the hard sphere structure factor obtained from
PY theory, i.e., the solution of Eq. (4) where ĉ(k) is the
Fourier transform of the PY direct correlation function.3,4,19

We see that the simulation results lie slightly above the PY
results for all values of η, with the difference becoming
more pronounced at high values. As expected, the PY results
for α0 continue to decrease monotonically at large values
of η, implying the (true) correlation length continues to
increase. There is no indication of the flattening off for
η > 0.54 that is observed in simulation. Recall that the PY
approximation is not especially accurate at large values of
η. For example the PY compressibility equation of state for
hard spheres yields a pressure that is already significantly
larger than the simulation result for values of η slightly below
freezing.17

IV. ASYMPTOTIC DECAY IN THE BINARY SYSTEM

A. Binary system pair correlation functions

We now consider the case of binary hard spheres for
which crossover occurs. In Fig. 1(a) gbb(r), denoting bb
or red-red particle correlations, is plotted alongside typical
confocal images, for three compositions. We prepared each
sample at a total packing fraction ηtot ≈ 0.5 to ensure that
the oscillations in gi j(r) decay sufficiently slowly so that 4-5
oscillations can be observed. The packing fractions ηb and ηs

are determined by fitting to results for the hard sphere gi j(r).28

Figure 1(b) displays the 10 state points (triangles) in the ηs

versus ηb plane.
Results for ln |rhi j(r)| are plotted in the top row of

Fig. 3. The bottom row shows corresponding results of
simulations with the experimental size ratio q = 0.648,

FIG. 3. Plots of ln |rhi j(r )| obtained by experiment (top) and simulation (bottom) for big-big, big-small, and small-small total correlation functions. The
packing fraction ηs (marked) is increasing from top (blue) to bottom (red) for each case. Curves are shifted vertically for clarity. The black lines in (a) and (e)
are fits from which α0, α′0, α1, and α′1 in Eq. (5) are obtained. The simulations correspond to size ratio q = 0.648.
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selected from the state points (circles) shown in Fig. 1(b).
The total packing fraction is kept constant at ηtot = 0.5 for all
simulations, resulting in particle numbers between Nb = 6875
and Nb = 1527 and Ns = 2807 and Ns = 22 460, for the big
and small particles, respectively, in a simulation volume with
periodic boundaries of size roughly 20σb × 20σb × 20σb.
We observe that for all three hi j(r), in both experiment and
simulation, the wavelength of the (damped) oscillations is
roughly σb for the blue curves (rich in b) and roughly σs

for the red curves (rich in s). At intermediate values of ηs

there is interference between the two length scales and Eq. (1)
is no longer sufficient to describe the observed behaviour.
Crossover clearly occurs but from visual inspection it is
difficult to identify whether it is sharp or not. Nor can we
determine the value of ηs where it occurs. A more powerful
method of analysis is required.

B. Pole analysis

Having demonstrated in Section III that the pole analysis
can be applied to experimental data, we now apply it to
the binary system and elucidate the origin of the structural
crossover. In Fig. 4 we plot the real and imaginary parts
of the six lowest lying poles (those closest to the real axis)
as a function of increasing ηs for a binary hard sphere
mixture with q = 0.648 at fixed ηs + ηs = 0.5 treated within
PY approximation,4,5,19 which represents the path through
the phase diagram (Fig. 1(b)) taken in the simulations and,
approximately, that of the experiments. The poles lie on
separate branches which are labelled πi in Fig. 4. The two
branches π1 and π2, where the imaginary part α0 is smallest,
determine the leading order decay of the pair correlation
functions4,5 and Equation (5) below includes contributions
from these two branches. At small values of ηs (colour blue)
the imaginary part α0 is smaller on the π1 branch than on the π2
branch so the dominant decay of the total correlation functions
hi j(r) has oscillations with wavelength 2π/α1 corresponding
to roughly the diameter of the big spheres. On the other hand,

FIG. 4. Pole structure of a two component hard sphere fluid treated in the
PY approximation for size ratio q = 0.648 and fixed ηs+ηb = 0.5. The
colour indicates the value of the packing fraction ηs increasing from blue
ηs = 0.01 to red ηs = 0.49. Crossover occurs at ηs = 0.28 where α0σb = 2.3,
as indicated by the horizontal arrow.

at large values of ηs (colour red) α′0 on the π2 branch is smaller
so the dominant decay of oscillations has wavelength 2π/α′1
corresponding to roughly the diameter of the small spheres.
At some intermediate value of ηs there is a sharp crossover
whereby the decay at large r of the three pair correlation
functions switches from being governed by the branch π1
to being governed by the branch π2. For a sharp crossover
to occur there must be separate branches π1 and π2 in the
(α1,α0) plane. If there is only one lowest-lying pole, as in
the one component case, sharp crossover cannot occur. For
this particular system the crossover occurs, as indicated by
the horizontal arrow, at a value of ηs = 0.28. The higher order
poles π3 to π6 shown in Fig. 4 play no role in the crossover.

Figure 4 shows, based on PY theory, that we may expect
the crossover to be dominated by the leading order poles π1
and π2. We now seek to identify these poles in the experiments
and simulations. We therefore fit the pair correlation functions
with the expression

rhi j(r) ∼ Ai je−α0r cos(α1r − θi j)
+ A′i je

−α′0r cos(α′1r − θ ′i j), r → ∞ (5)

which corresponds to the two-pole approximation.4 Examples
of such fits, denoted by the black lines, are shown in Fig. 3(a)
hbb(r) (experiment) and Fig. 3(e) for hbs(r) (simulation).
Fits are performed in the region 1.8 < r/σb < 4.0. For larger
separations statistics are limited and for smaller separations
the approximation Eq. (5) is no longer appropriate. The
fits determine the first pole: π1 = α1 + iα0, and the second:
π2 = α′1 + iα′0. Which pole contribution dominates at longest
range in Eq. (5) depends on whether α0 is greater or smaller
than α′0 and on the composition.4 In Fig. 5 we plot the
resulting values of the four parameters for all the compositions
investigated. The results indicate two separate branches π1

FIG. 5. Pole structure of leading two poles as the composition is varied for
ηb+ηs ≈ 0.5. Circles: results of fits with functions of the form Eq. (5) to
ln |rhbs(r )| from simulations of hard sphere mixtures, where ηs is varied
from 0.03 (blue) to 0.55 (red). Triangles: corresponding fits to ln |rhbb(r )|
from experiment. The values of (ηb,ηs) are given in Fig. 1(b). Crossover
occurs at the statepoint (ηb,ηs) where the values of α0 in each branch
are equal, indicated by the horizontal arrow. For q = 0.648 this is close
to (0.22,0.28) and α0σb = 2.3 (PY), α0σb ≈ 2.4 (Sim), α0σb ≈ 2.5 (Exp).
The grey lines show the PY approximation for the first pole π1 and second
pole π2.
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and π2, plotted for experiments(triangles) and simulations
(circles). Remarkably both sets of results lie rather close to
those from PY theory for the binary hard sphere mixture, with
the same size ratio (grey lines), obtained by solving Eq. (2)
with the PY direct correlation functions. For the present system
crossover occurs at ηb = 0.22 (PY), ηb = 0.21(4) (Exp), and
ηb = 0.22(2) (Sim). Figure 5 thus provides strong evidence
that the experimental system follows closely the predictions
of theory and simulation, showing that in the binary colloidal
mixture there is a sharp crossover.

C. Percolation analysis

We now consider the relationship, if any, between
crossover and connectivity of each species. In Ref. 26 the
authors performed an analysis of real-space configurations
by calculating the extent of networks corresponding to bb or
ss nearest neighbour bonds based on a Voronoi construction.
They argued percolation was related to crossover as in their
2d approach both occurred around the same state point. We
follow their procedure and consider the radius of gyration of
a network of regions of each species

Ri
g =


1
ni

ni
k=1

(xi
k
− Ri

0)2, (6)

with Ri
0 the center of the network. Assuming there are N i

C

networks formed by ni connected particles of species i, we
calculate a weighted average of the radii of gyration

⟨Ri
g⟩ = 1

N i

N i
C

m=1

ni(m)Ri
g(m), (7)

where N i denotes the total number of particles of species i.
In analysing the experimental and simulated configurations,
a Voronoi tessellation31,32 of the networks of big and small
particles was performed. The Voronoi tessellation provides
a list of neighbours for each particle in the sample. The
experimental data have no periodic boundary conditions;
therefore, the edges were cut (10 pixels in each dimension)
after the Voronoi tessellation and the networks inside the
sample evaluated. Two particles which share a face of their
respective Voronoi polyhedra are deemed connected. In the
list of neighbours the clusters (in networks of the big and small
particles) need to be identified, for which we use a depth first
search.33 The weighted average of the radii of gyration ⟨Ri

g⟩
is shown in Fig. 6 as a function of ηb for both experiment and
simulation.34

Figure 6 shows the onset of percolation for species b
and s in both simulation and experiment. The percolation
behaviour of the big particles is very similar in experiment
and simulation. In both cases structural crossover, inferred
from our pole analysis of hi j(r) and marked by a vertical line
(solid for PY theory and simulation, dashed for the fits to the
experimental data), occurs prior to the percolation threshold
for species b. For the small particles percolation has already
occurred for values of ηb much larger than the crossover
value. On the basis of these results, it is difficult to see how
structural crossover can be linked to onset of percolation. This

FIG. 6. The weighted average of the radius of gyration ⟨Ri
g⟩ of species

i, divided by the box diagonal d as a function of packing fraction ηb of
the big particles. A percolating cluster that spans the system has ⟨Ri

g⟩/d
= 1/(2√3)= 0.289. Results from simulation (circles) and experiment (trian-
gles) are shown. The values of (ηb,ηs) are given in Fig. 1(b). The vertical
solid line indicates the location of the crossover line as inferred from PY
and simulations while the vertical dashed line shows the estimate from
experiment.

conclusion differs from that of Ref. 26 whose analysis is based
on 2d systems where there is a single point for percolation.
We suggest that it could be a coincidence that percolation
occurred close to crossover in the dense mixtures of Ref. 26.
Our present results show that crossover is not related to
percolation in 3d. Furthermore we know that crossover persists
to extreme dilutions for hard sphere mixtures, at least for size
ratio q = 0.5,5 whereas percolation cannot occur in a dilute
system. Moreover crossover was found in the exactly solvable
model of a binary hard-rod mixture in 1 dimension5 and there
is no percolation in 1d.

V. DISCUSSION AND CONCLUSIONS

We investigated a fundamental aspect of the structure of
bulk liquid mixtures, namely, the decay of the pair correlation
functions gi j(r). For binary hard sphere mixtures, Percus-
Yevick theory and density functional theory predict that
the dominant wavelength of the oscillations in gi j(r) should
change abruptly at a sharp crossover line in the ηb versus ηs

phase diagram.4,5 The pair correlation functions gbb(r), gbs(r),
and gss(r) obtained in our particle-resolved experiments and
Monte Carlo simulations exhibit clear structural crossover,
i.e., the wavelength of the oscillatory decay changes from
approximately the diameter of the large particles to the
diameter of the small particles as the relative amount of
small particles is increased.

In order to investigate the nature of the crossover,
i.e. whether or not it is sharp, we have shown that it is
possible to apply the pole analysis to experimental data and
this provides strong evidence that crossover is indeed sharp.
For the size ratio and total packing fraction we consider, fitting
the functional form Eq. (5), which allows for the presence
of two wavelengths, to the experimental and simulation data
provides compelling evidence for pole structure similar to that
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from theory — see Fig. 5. Moreover this enables us to locate
the crossover point in the phase diagram and we find it is
very close to the results of theory and simulation. Note that
although the theory is based strictly on asymptotic analysis
of the mixture Ornstein-Zernike equations, our experiments
and simulations show that the predictions remain valid for the
intermediate range decay of gi j(r), i.e., for r > second nearest
neighbor. Note also that our colloidal particles exhibit a degree
of polydispersity whereas the present theory and simulations
take no account of this.

We observe that the experiments and simulations,
performed at ηtot = 0.5, display bicontinuous percolation over
a range of ηb. That crossover does not occur within this range
reinforces our argument that percolation and crossover are, in
general, unrelated phenomena.

Finally we emphasize that structural crossover is not
particular to binary hard spheres. We can expect similar
behaviour for many dense binary liquid mixtures, such as
metals, noble gases and molecules such as CCl4 and globular
proteins which may reasonably be treated as spherical.
Neutron scattering experiments, in particular, those which
enable the oscillatory decay of gi j(r) to be extracted from
the partial structure factors,35,36 could elucidate further the
crossover in a wide range of materials.
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