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The formation of colloidal gels is strongly dependent on the volume fraction of the system and the
strength of the interactions between the colloids. Here we explore very dilute solutions by the means of
numerical simulations and show that, in the absence of hydrodynamic interactions and for sufficiently
strong interactions, percolating colloidal gels can be realised at very low values of the volume frac-
tion. Characterising the structure of the network of the arrested material we find that, when reducing
the volume fraction, the gels are dominated by low-energy local structures, analogous to the isolated
clusters of the interaction potential. Changing the strength of the interaction allows us to tune the com-
pactness of the gel as characterised by the fractal dimension, with low interaction strength favouring
more chain-like structures. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4973351]

I. INTRODUCTION

When subject to a moderate quenching, a large variety
of systems can form macroscopic networks of arrested mate-
rials, also called gels.1–4 Systems as different as proteins,5

clays,6 foods,7 hydrogels,8 and tissues9,10 can undergo gela-
tion, with innumerable applications, as well as more exotic
kind of systems such as phase-separating oxides11 and metallic
glassformers.12

In order to predict the mechanical properties of gels, it
is important to know both their local13–15 and global16–18

structure, but a deep understanding of both remains today a
challenge. For example, in the very dilute limit, the study of
gel formation via molecular dynamics is challenged by the
very long times required to form aggregates, with equilibra-
tion times that easily exceed 108 integration steps.19 In the
model colloidal gels which we will consider, demixing of the
particles into a (colloidal) “gas” and “liquid” occurs. Spinodal
demixing leads to a network of particles20–24 which under-
goes dynamical arrest.25–27 The final structure can persist for
years,28 if the self-generated or gravitational stress is weaker
than the yield stress.7,29 Demixing is driven by effective attrac-
tions between the colloidal particles induced by the addition
of non-absorbing polymer. Thus, although the original system
is a mixture of three important components — colloids, poly-
mers, and solvent — we can build an effective one-component
model of colloids which experience a pair, spherically sym-
metric attractive interaction whose strength corresponds to
different polymer concentrations.30,31

Nonetheless, the spinodal decomposition scenario is not
the only possible mechanism, and due to some discrepancies
in the literature23,34 alternative pathways to gelation have been
proposed35 based on percolation.

In the present work we investigate the low-volume fraction
limit of gelation (neglecting hydrodynamic interactions and
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their long-range, multi-body effects32,36) and its relation with
percolation for a system of Brownian particles with tuneable
short-range attractions. In particular, we demonstrate that the
structural features present at moderately low volume fraction
φ≈ 10−1 survive at much lower volume fractions, φ≈ 10−3,
and allow for the formation of thin percolating structures.
When the interaction strength is strong enough (i.e. when the
effective temperature is low enough), we show that aggrega-
tion proceeds systematically and that a power law behaviour
relates the increase in the time to form a percolating gel and
the inverse of the volume fraction. Thus gelation from a state
of clusters – which may be extended in space – may be viewed
as a time-dependent percolation transition.

The article is organised as follows: in Section II we
present the numerical model and the protocol followed in our
numerical simulations; in Section III we illustrate the observ-
ables used to characterise the structure of the simulated gels;
in Section IV we report the main results concerning the forma-
tion of nonequilibrium gels at low volume fractions and their
structural features, followed by the analysis of non-percolating
clusters at very low densities; we conclude with a critical
assessment of our results.

II. MODEL

We perform molecular dynamics simulations37 of a model
gel based on simple interaction potentials. We consider a poly-
disperse additive mixture of particles of different diameters.
Particles i and j interact via a truncated and shifted Morse pair
potential u(r),

βu(rij) = βε exp[ρ0(σij − rij)](exp[ρ0(σij − rij)] − 2), (1)

where β = 1/kBT is the inverse temperature with Boltzmann
constant kB, ρ0 = 33 is the range parameter, and σij = (σi

+ σj)/2. The interaction potential is truncated at distance
rcut = 1.4σij. Particle sizes are drawn from a Gaussian distri-
bution of meanσ and width∆, with polydispersity∆/σ = 4%.
This effectively reproduces the physics of colloid-polymer
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mixtures, leading eventually to gelation due to the very short
interaction range and very strong attraction, whose amplitude
is determined by the interaction strength βε.32,38–40

We consider systems of N = 10 000 and 100 000 particles
performing over-damped Langevin dynamics. We explore a
wide range of interaction strengths βε and volume fractions
φ = 1

6L3

∑N
i πσ

3
i , where L is the linear size of the cubic sim-

ulation box, with periodic boundary conditions. In particular
we focus on very small volume fractions, down to φ = 0.001,
and very strong interactions, up to βε = 100. While these may
exceed the interaction strengths typically associated with
colloid-polymer mixtures, van der Waals interactions between
colloidal particles are of this order and greater.41

Every simulation run starts from an initial random dis-
tribution of the particle centres. Velocities are then randomly
assigned from a Maxwell-Boltzmann distribution at inverse
temperature β and the particles undergo an over-damped
Langevin dynamics with Brownian time τB = (σ/2)2/6D
where D is the self-diffusion constant for a particle of diame-
ter σ and it is related to the friction coefficient γ by Stokes’s
law D= 1/βγ. We integrate the equations of motion using
the velocity-Verlet algorithm with time step dt = 0.001

√
mσ/ε

and γ=10
√

mε/σ, evolving the system for a maximum of
2 · 109 integration steps. Average values and standard errors
are evaluated from 6 distinct trajectories for every state point.
Throughout we employ the LAMMPS molecular dynamics
package.37

The state points that we consider are represented on the
schematic diagram in Fig. 1: most of the simulations have been
run in the percolating gel phase (green squares), with volume

FIG. 1. Simulation state points on a schematic phase diagram for gels mod-
elled by Morse interactions and Brownian dynamics (notice the double log-
arithmic scales): black and white symbols are from Ref. 32 and identify the
previous estimates for the percolation transition. Circles identify the bound-
aries between fluid and percolating fluid, while black and white lozenges
correspond to cluster and gel phases, when the observation time is chosen to
match the experimental conditions.32 The star corresponds to the approximate
position of the critical point.33 With the present work, we explore the states
indicated by squares, crosses, and triangles: we follow the system till per-
colation occurs and find gels down to much smaller volume fractions (green
squares) than previously observed. Non-percolating clusters (red crosses) are
found when the percolation time τperc exceeds the accessible computer simu-
lation time: the percolation line (dashed line) is time-dependent and when time
increases, it moves to lower volume fractions (gray-shaded dashed lines). In
a limited range of interaction strengths, we also observe the phase separation
into gas and crystalline “droplets” (blue triangles).

fractions in the [0.01, 0.07] interval, as well as the formation
of crystalline aggregates (blue triangles); we also sample very
low volume fractions (red crosses) where a non-crystalline
cluster phase is observed. We focus in the following on the rel-
evant structural features that distinguish these different phases.
The gelation region (where the system has a sufficient interac-
tion strength βε to undergo demixing, meaning that βε > βcε
at criticality) is determined through the extended law of cor-
responding states where the reduced second viral coefficient
B∗2 ≈ −1.5 requires that βε . −2.96.42

III. METRICS

In this work, structural measurements on gels and aggre-
gates are performed focusing on two-point correlations (static
structure factor) and higher order correlations as detected by
the Topological Cluster Classification (TCC).43

Emerging characteristic length scales can be identified44

computing the structure factor S(q) directly in reciprocal space
defined as

S(q) = N−1
N∑

k,l=1

〈exp[iq · (rk − rl)]〉, (2)

where the average is performed on the ensemble of distinct
initial conditions and evaluated isotropically at q = |q|.

The TCC, instead, provides a library of structures com-
posed of m particles that are ground states (energy minima) for
the chosen interaction potential in the case of mono-disperse
mixtures.45,46

Using the Voronoi network of direct neighbours and
selecting particles within the cutoff distance rcut, we are able
to reconstruct the entire neighbourhood of every single parti-
cle and identify whether it is compatible with one or more of
the candidate structures of the TCC. In particular, we focus on
structures of m = 5, 8, 9, 10 particles relevant to the Morse
interaction and we additionally check for local crystalline
order, such as face centred cubic (fcc) and hexagonal close
packed (hcp) order (Fig. 2). It is important to notice that some
of these local minima have an immediate geometric meaning:
the m = 5 triangular bipyramid corresponds to tetrahedral order,
the m = 10 defective icosahedron to fivefold symmetric order.

FIG. 2. The local energy minima for m identical particles interacting with
the Morse potential considered by the TCC algorithm in order to detect local
order. Every structure is composed of rings of particles (highlighted in different
colors). Structures with m = 8, 9, 10 are based on five-membered rings. The
m = 5 structure corresponds to tetrahedral order.
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FIG. 3. Aggregates (coloured) and percolating clusters
(white particles) for different volume fractions and inter-
action strengths: (a)φ = 0.015 and βε = 10, (b)φ = 0.05
and βε = 6, (c) φ = 0.05 and βε = 100. The network is
formed by thick, extended chains for moderate interaction
strengths, as in (a) and (b), and it is more space-filling for
very large interaction strengths (c).

As a result of the TCC analysis, we obtain the concentration
of structures nm = Nm/N for every candidate structure, where
Nm corresponds to the number of particles belonging to a col-
lection of structures of type m. Since a given particle can be in
principle associated to multiple kinds of local order, we choose
to establish a hierarchy based on the size of the candidate struc-
ture and label the particles consequently: the priority of label
assignment follows the order of the list {fcc, hcp, 10, 9, 8, 5}.

The formation of gels entrains the assembly of extended
aggregates of particles that percolate through the simulation
box, see Figure 3. We call these aggregates clusters and we
detect them with an agglomerative algorithm:47 particles at a
distance lesser than rcut are connected and belong to the same
cluster; the system is partitioned into distinct clusters whose
maximal extension `x, `y, `z in the x, y, or z dimension can be
compared with the size of the box. Whenever `i > L − 2σ we
identify the cluster as a percolating cluster, and the system is
considered to be a gel.

An additional direct estimate of the size of the aggre-
gates is provided by the radius of gyration Rg, defined, for an
aggregate of P particles, as

Rg =

〈
1
P

P∑
i=1

(~ri −~rcm)2
〉

, (3)

where~rcm is the position of the centre of mass of the aggregate
and 〈·〉 indicates the average over the ensemble of aggregates.
The growth of the radius of gyration in time allows us to
describe the aggregation process.

Finally, we also quantify conformational changes by the
means of the fractal dimension of the gel configurations.
In particular we estimate the Hausdorff dimension48 (natu-
rally smaller than the Euclidean dimension) following the box
counting algorithm,49 which subdivides the system in cells
of variable linear size s and evaluates the number of cells Nc

filled by the gel’s branched structure as a function of s. The
box-counting fractal dimension is defined as

df = lim
s→0

log Nc(s)
log 1/s

, (4)

and it provides (in the limit of large systems) an estimate of
the fractal dimension df of the gel’s structure.

IV. RESULTS

We divide our analysis into four parts: we first describe
the dynamics of gel formation and its consequences on the
large wavelength structural features (Sec. IV A); from this we
estimate the time necessary to form percolating networks for
lower and lower volume fractions and observe no sign of an

intrinsic limit volume fraction for sufficiently large interaction
strengths (Sec. IV B); we then focus on the structural features
of the percolating networks at low (≈0.01, Sec. IV C) and
extremely low (≈0.001, Sec. IV D) volume fractions, making
use of the higher order correlation functions provided by the
topological cluster classification.

A. Time evolution

Starting from a uniformly distributed initial random con-
figuration, particles diffuse and eventually interact when
approaching each other at distances below rcut. Due to the
deep attractive wells of the chosen potential, the system rapidly
enters a regime of very slow relaxation, where the particles
gradually form clusters whose extension depends on the ther-
modynamic conditions and on the observation time. The slow
relaxation process involves a continuous drift of the poten-
tial energy per particle towards lower and lower values, due
to the continuous (and progressively slower) reorganisation
of the particles within the clusters and the growth of more
extended clusters. At a time τperc—the characteristic of the
chosen volume fraction φ and interaction strength βε—a large
percolating cluster is formed, and we regard the system as a
nonequilibrium percolating gel.1

The process of formation of a percolating gel is accompa-
nied by a complex structural organisation of the local neighbor-
hood of the particles and, at a longer range, of the connectivity
properties of the cluster. At the level of the two-point correla-
tion functions, this is illustrated in Figure 4, where we show
the time evolution of the structure factor S(q) for a system at
moderately low volume fraction and interaction strength.
This displays a series of remarkable features: (i) the striking
increase of the low-q peak illustrates the rapid formation of
large, system-spanning structures when approaching the per-
colating regime; (ii) the shape of the peaks at qσ ≈ 4π indicates
the formation of local order at times as early as 0.008 perco-
lation times; (iii) finally, the increase in amplitude of the sec-
ondary peaks and the emergence of longer-length scale oscil-
lations suggest the presence of medium-range correlations in
the final percolated structures.

B. Limits of gelation

It has been suggested in a previous study32 (where the
observation time was fixed in order to match the experimental
conditions) that percolating gels in simulations without hydro-
dynamics become hard to access for volume fractions below
φ∗ ∼ 0.07. Performing more extensive numerical simulations,
we quantify this effect estimating the time needed in order to
form a percolating cluster as a function of both the volume
fraction and the interaction strength. As illustrated in Fig. 5,
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FIG. 4. Double logarithmic plot of the time evolution of the structural changes
as detected by the structure factor S(q) (Eq. (2)) for a system at volume fraction
φ = 0.05 and interaction strength βε = 10. At early times the system is in
a disordered gaseous state; when approaching the percolation time τperc and
gelation, the magnitude of the low-q peak increases dramatically. Inset: local
structure emerges in the shoulder of the peak at qσ ≈ 4π.

the percolation time τperc increases by several orders of mag-
nitude when the volume fraction is reduced. Larger interaction
strengths tend to reduce the time needed to percolate, and this
effect is amplified at smaller volume fractions.

In particular, for moderate interaction strengths, we col-
lect data down to low volume fractions φ≈ 0.01. In the acces-
sible dynamical range, the relation between percolation times
and volume fraction appears to be governed by a power low
τperc ∝ φ

−α, with α(βε) ∈ [3.3, 4.7], suggesting that no char-
acteristic or limit volume fraction can be detected. This also
implies that any limit to the detection of a percolating cluster is
mainly set by the observation time: if this is long enough, one
can expect to observe a gel state even in the limit of extremely
diluted suspensions. Similarly to inferences from experiments
in microgravity,50 we rationalise our results observing that
gelation is fundamentally limited only by the magnitude of
thermal fluctuations, capable of dissolving the percolating
clusters.

C. Structural properties at low volume fractions

Once a percolating cluster has formed, we analyse the
structural properties of the system in order to identify the

FIG. 5. Elapsed time τperc before the detection of a percolating cluster as a
function of the inverse volume fraction and the interaction strength in a double
logarithmic plot. Dotted lines are power-law fits.

FIG. 6. Structure factor S(q) for (a) fixed volume fractionφ = 0.05 and several
values of the interaction strength and (b) fixed interaction strength βε = 10
and varying volume fraction.

nature of the different gels obtained at different thermody-
namic conditions. First we focus on the structural changes as
detected by the structure factor.

In Fig. 6(a) we illustrate the effect of changing the inter-
action strength on a system that is moderately dense, φ = 0.05:
the characteristic wavelengths are unchanged by the changing
interaction strength; however, one observes that for (βε > 6)
the peak at σq≈ 4π presents a shoulder, indicative of the
increase of local order. At the same time, the peak at σq≈ 2π
decreases in height, accompanied by the increase in amplitude
corresponding to longer-range wavelengths.

In Fig. 6(b) a similar scenario is obtained when lowering
volume fractions at a fixed value of the interaction strength
βε = 10. However, the increase of local order as detected at
wavelengths close to 4π is accompanied by a further increase
in the amplitude of the peak at 2π and an overall depletion
of the long wavelength modes. These results indicate that the
change of structure hinted by the shoulder σq≈ 4π takes a
different form if one decreases the volume fraction or increases
the interaction strength.

In order to quantify the nature of the different behaviour,
we compute higher order correlations. More detailed knowl-
edge on the kind of local order appearing in the formation
of the percolating gels can be obtained from the topological
cluster classification analysis of the particle coordinates (see
Sec. III). This method identifies, within the network of neigh-
bours, domains composed by arrangements of particles com-
patible with the local minima of m particles interacting via
the Morse potential. The results of this analysis are shown
in Figures 7 and 8 for constant volume fraction and constant
interaction strength conditions, respectively.43

Among the several structures identified by the TCC,
some specific arrangements have a prominent role, depending
on the interaction strength and the volume fraction. At fixed
volume fraction φ = 0.03 (Fig. 7), we observe that starting
from very high interaction strength βε the particles (kineti-
cally arrested in their initially random relative positions) tend
to form structures compatible with m = 8, 9, and 10 which all
are fivefold symmetric polyhedra. The m = 10 defective icosa-
hedra in particular, become more and more represented as the
interaction strength is reduced while lower order structures
(5 to 9 particles) are less present, indicating that aggregation is
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FIG. 7. Concentration n = Nm/N of particles identified in local structures of
m particles at φ = 0.03. A disordered fluid phase at low βε < 3.5 is followed
by a phase where crystalline order prevails (3.5 < βε < 6) and finally a perco-
lating phase dominated by clusters of size m = 10, formed by five-membered
rings. Error bars are within the size of the symbols.

more accessible and larger low energy structures can be
formed. This is even more evident when the interaction
strength is decreased below βε = 8 where local order is
enhanced in the form of local crystalline structures such as face
centered cubic or hexagonal close packed structures, consis-
tent with previous work in the present51 and related52 systems.
We notice that the crystalline clusters form separately and at
such low densities they consist in isolated clusters that do not
percolate through the system. For βε . 3 the attractions are
so weak that the thermal fluctuations are sufficient to stabilise
a fluid phase and make gelation impossible.

We then analyse two exemplary cases at fixed interaction
strengths and variable volume fraction: βε = 4 (compatible
with local crystalline order) and βε = 10 (where crystals
are rare), see Fig. 8. For βε = 4 we find that the density
fluctuations are sufficient to trigger the nucleation of local crys-
talline clusters. When the volume fraction is above φ = 0.025,
there is a variety of local arrangements in hcp, fcc, or fivefold
symmetric order (m = 10), but below φ= 0.025 the fcc local
order dominates and the system is mainly formed by isolated
crystalline clusters immersed in a gaseous phase (see Fig. 9(a)),
like “droplets of crystals.” For values of 4< βε < 10 we
observe an intermediate regime where crystalline and noncrys-
talline structures contribute to the formation of a percolating
network.

For a larger interaction strength (βε = 10), we vary
the volume fraction and track the structural changes in the
formed gels, Fig. 8(b). The kind of structures formed ranges
from percolating gels to a cluster phase, as depicted in
Figs. 9(b) and 9(c). In this case, we see that the fraction of
particles participating to low energy structures such as the
m = 10 defective icosahedra (indicative of fivefold symmetry)
increase systematically, at the expense of smaller clusters as
the volume fraction φ is reduced. This suggests that when the

FIG. 8. Concentration nm = Nm/N of particles identified in structures of m
particles at βε = 4 (a) and βε = 10 (b). In (a), crystalline clusters, domi-
nated by fcc local order, are formed for φ < 0.025. In (b), percolating gels
(φ > 0.005) and non-percolating aggregated clusters (φ < 0.005) are formed.
Only relevant structures are shown. Error bars are within the symbol sizes.

gel is made only by narrow filaments due to the paucity of the
particles available, these are mainly arranged into low energy
structures, which form the backbone of the percolating net-
work, see Fig. 10. The deep energy minima represented by
the m = 10 defective icosahedra are then responsible of the
mechanical stiffness of the gel and its resistance to thermal
fluctuations. It is important to notice that it is precisely this kind
of structures that are underrepresented in experimental condi-
tions,32,38,53 due to the effects of hydrodynamic interactions,
excluded from the present study.

All the previous measurements are local to some degree.
In order to quantify how the percolation network changes
globally as we change the interaction strength we measure a
global property of the network, as its fractal dimension. We
perform a measure of structural order through the estimation
of the average fractal dimension df of the percolating clusters
via box counting (as described in Section III). With this method
(see the inset of Fig. 11) it is possible to probe two regimes: the
fractal dimension of structures at small scales (below 5σ) and
at larger scales (larger than 5σ). In this way we can account
for the different degree of local compactness and the presence
of holes in the branched network [see Figs. 3(b) and 3(c)].

For a moderately dilute system at φ = 0.05 we observe
in Fig. 11(a) that at large scales (black dots) the change in
the interaction strength leads from space-filling percolating
networks for high βε (df ∼ 2.4) to more chain-like struc-
tures at lower βε, as hinted by the decrease of df towards
df ∼ 2 when approaching the gel-fluid boundary at βε ≈ 3.5.
The information at short scales (white circles) shows that the

FIG. 9. Final configurations at different volume fractions
and interaction strengths: (a) a crystalline cluster phase at
βε = 4 and φ = 0.0154 with “crystal droplets”; (b) a gel
at βε = 10 and φ = 0.03; (c) a cluster phase at βε = 10
and φ = 0.001. Phases (b) and (c) are dominated by the
m = 10 defective icosahedra local order (green) while (a)
shows local fcc crystalline order (azure) coexisting with
a gaseous phase.
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FIG. 10. The particles in the local structure corresponding to the m = 10 Morse
energy minimum (green) form the backbone of the percolating gel filaments
at very low volume fractions (here φ = 0.01) at βε = 10.

chains are less compact as we increase the interaction strength,
with more holes that reduce the local fractal dimension from
df ∼ 1.8 to df ∼ 1.5. These results are consistent with the fact
that diffusion-controlled cluster accretion54 (where single dif-
fusing particles coalesce on a seed) is compatible with fractal
dimension df ∼ 2.5 in three dimensions while cluster formation
by diffusion-limited aggregation55 (where clusters of compa-
rable size aggregate) is compatible with df ∼ 1.75. At very high
interaction strengths (very low temperatures, slow diffusion)
the particles mainly aggregate on slowly moving seeds, while
coalescence of equal size, thick chain-like clusters prevails at
smaller βε.

D. Low volume fractions

We now consider even lower volume fractions and discuss
the structural properties of the aggregates that we obtain in the
light of the percolating gels illustrated in Sec. IV C.

FIG. 11. (a) Box-counting fractal dimension as a function of the inter-
action strength βε at volume fraction φ = 0.05. The shaded area
indicates the region for which percolation is not observed. The black
dots are the estimate at large scales, while the white dots are the esti-
mate at short scales. The box counting method (filled box Nc vs lin-
ear size of the boxes s) is shown in inset (b) at βε = 100: for box
sides s < 5σ we probe the local structure, obtaining a first exponent
(blue dotted-dashed line) while at larger scales we obtain a second exponent
(red dashed line).

When decreasing the densities to extremely low values
(φ= 0.003, 0.001), the time needed to form a percolating clus-
ters exceeds the available computation time (the longest cal-
culations lasted 2688 CPU h). The evolution of the system
proceeds through a slow aggregation that nevertheless permits
the formation of local, low energy aggregates. In Figure 8
we demonstrate two distinct behaviours, as a function of the
interaction strength: for moderate interaction strengths βε = 4,
Figure 8(a), we observe that the local crystalline order pre-
vails down to very low packing fractions. In particular, for
φ < 0.025, a large fraction of particles resides in an fcc-like
ordered cluster, coexisting with a very dilute gas of isolated
particles. For volume fractions even smaller (φ < 0.01) the
time necessary for aggregation is even slower and it exceeds
the accessible computation time.

Conversely, when the interaction strength is strong
enough, the crystalline order is largely suppressed. As demon-
strated in Figure 8(b), the structural signature of these dis-
connected clusters is consistent with the features of higher
density percolating gels, indicating that at the local level it is
hard to distinguish percolating from non-percolating systems.
In particular, we notice that the m = 10 geometry still domi-
nates the statistics, showing that the aggregation stems from
the formation of low energy clusters of fivefold-membered
rings.

At such low volume fractions, the forming a percolating
network becomes challenging: nonetheless we can compare
the typical structure of the aggregates tracking the time evolu-
tion of the radius of gyration Rg as a function of time (Fig. 12).
Diffusion-limited cluster aggregation predicts that Rg ∼ t1/df

where df is the fractal dimension of the cluster.56,57 For vol-
ume fractions ranging from 0.001 to 0.05 at a fixed interaction
strength βε = 10 we observe that while at very early times
df ≈ 2.5, at later times the growth of the radius of gyration
is compatible with df ≈ 1.7, compatible with diffusion-limited
cluster aggregation. The data collapse suggests that the growth
mechanism is the same for the same interaction strength and
that the low volume fractions have the main consequence of
dramatically slowing down the aggregation process.

We remark that the ensemble of 6 distinct uniformly dis-
tributed random initial conditions does not appear to affect
the results significantly and that even for very low volume

FIG. 12. Evolution of the average radius of gyration of the aggregates for
different volume fractions at βε = 10. For φ = 0.05, we remove the perco-
lating cluster from the statistics. The continuous line indicates the slope of
t1/df where df is estimated for φ = 0.05, while the dashed line corresponds to
df = 2.5, associated to diffusion-dominated cluster accretion. Time is rescaled
by tRg=4σ , the time at which the average radius of gyration is equal to 4σ.
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fractions and high interaction strengths we reproduce very sim-
ilar structural signatures as detected by the topological cluster
classification.

V. CONCLUSIONS

By the means of numerical simulations, we have explored
the formation of model nonequilibrium colloidal gels in
the limit of very low volume fractions and high interaction
strengths in a solution modelled by over-damped Langevin
dynamics. The considered state points, Fig. 1, allowed us to
demonstrate that, under the idealised conditions of our numer-
ical simulation, percolating gels can be found down to very
low densities, provided that the observation time is sufficiently
long. In fact, we have shown that the time necessary in order to
observe a percolating cluster increases rapidly with the inverse
volume fraction, suggesting that density alone cannot be a limit
to gel formation.

We have also explored extremely low volume fraction
gels, where percolation occurs on longer time scales than
we can access. Comparing the structural features of these
extremely low density aggregates and the higher density perco-
lating networks we observe very similar patterns, suggesting
that the mechanisms at play at the local level are the same:
rigidity emerges from the condensation of the colloids into
locally favoured structures.38 In particular, we observe that the
fivefold symmetric order (represented by the m = 10 defective
icosahedra) plays a very important role in forming the back-
bone of the chain-like network realised at very low densities.

On the basis of this analysis, we extended previous phase
diagrams,32 identifying a new region where Brownian dynam-
ics simulations can realise percolating gels if the observation
time is longer than the percolation time (Fig. 1): the obtained
gels are however strikingly different from the structural point
of view with respect to those found in experiments,32,38,53 with
more compact aggregates and prevalence of fivefold symmet-
ric order. This emphasises the importance of (here absent)
long range, hydrodynamic interactions in order to form less
compact structures.32,36

The overall physical scenario suggests that gelation occurs
when two necessary but not individually sufficient conditions
are satisfied (see Fig. 1): on one hand, the interaction strength
needs to be large enough to drive phase separation to a liq-
uid and gas; on the other hand, the observation time needs
to be sufficiently long to allow for percolation to occur. In
fact, even when demixing occurs at low volume fractions for
too weak interaction strengths, the resulting liquid droplets—
which may then crystallise—appear too compact to percolate
if βε . 8. In the case of very low volume fractions, very
thin filaments are expected to be formed, which appear as
isolated clusters for observation times shorter than the per-
colation time. However, the local structure of such filaments
would be hardly distinguishable from the local structure of the
percolating network.

Building on the present results for the purely Brownian
case, it will be possible to understand how the hydrodynamic
forces affect the dynamics (in terms of the time required to
form a percolating cluster), the local order, and the connectiv-
ity properties of the network in the limit of very low densities

once the hydrodynamic effects will be added (in the form of, for
example, multi-particle collision dynamics58). This will con-
tribute to a microscopic explanation of the emergent rigidity
in colloidal gels.
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