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Tackling the low-temperature fate of supercooled liquids is challenging because of the immense time
scales involved, which prevent equilibration and lead to the operational glass transition. Relating glassy
behavior to an underlying, thermodynamic phase transition is a long-standing open question in condensed
matter physics. Like experiments, computer simulations are limited by the small time window over which a
liquid can be equilibrated. Here, we address the challenge of low-temperature equilibration using trajectory
sampling in a system undergoing a nonequilibrium phase transition. This transition occurs in trajectory
space between the normal supercooled liquid and a glassy state rich in low-energy geometric motifs. Our
results indicate that this transition might become accessible in equilibrium configurational space at a
temperature close to the so-called Kauzmann temperature, and they provide a possible route to unify
dynamical and thermodynamical theories of the glass transition.
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I. INTRODUCTION

Although statistical mechanics was firmly established
more than a hundred years ago [1], simple liquids remain a
persistent challenge when cooled to low temperatures. In
particular, the dramatic super-Arrhenius increase of the
relaxation time so far eludes a generally accepted explan-
ation. A multitude of theoretical approaches have been
advanced [2,3], but obtaining data that enable discrimina-
tion between these is challenging, not least because of the
difficulties in handling the huge time scales required to
equilibrate supercooled liquids. At some point (typically
bypassing crystallization), the structural relaxation time 7,
exceeds the experimentally or numerically accessible
time scale, and the liquid falls out of equilibrium into a
dynamically arrested state called a glass. This so-called
operational glass transition is protocol dependent and
distinct from equilibrium thermodynamic phase transitions.

However, the idea that at very low temperatures a
genuine thermodynamic phase transition controls dynamic
arrest has been around for a long time, starting with an
observation by Kauzmann [4]: Extrapolating the configu-
rational entropy of the liquid suggests that it should fall

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

2160-3308/17/7(3)/031028(14)

031028-1

Subject Areas: Chemical Physics, Soft Matter,
Statistical Physics

below that of the crystalline solid at a finite (Kauzmann)
temperature T'g. One resolution of this apparent paradox is
to posit a thermodynamic transition to an “ideal glass” with
very low configurational entropy. This transition is hard to
access with the operational glass transition intervening
because of the accompanying divergence of the structural
relaxation time [5].

More recent theories of the glass transition continue to use
the language of phase transitions although they disagree on
even the most basic assumptions. On one hand, the emer-
gence of slow dynamics in a rugged free-energy landscape is
anticipated through freezing, not to a single crystal but to a
vast number of random, aperiodic states [6]—a picture that
finds justification from mean-field results obtained in higher
dimensions [7,8] and recent experiments [9]. Approaches
based on replica symmetry breaking also imagine a phase
transition to a state where configurations are closely related
to one another; i.e., they have high overlap [10]. Another
example, geometric frustration, posits that the population of
geometric motifs that minimize the local free energy (locally
favored structures—LFS) strongly increases upon super-
cooling and that the arrest seen is a manifestation of an
avoided phase transition. Approaching the ideal glass
transition, the system may seek to minimize its entropy,
which can correspond to an increase in LFS [11].

Quite in contrast, in dynamical facilitation theory [12],
dynamic correlations are the fundamental mechanism for
the slow-down, with configuration-based static correlations
being absent or at least irrelevant. Originally developed
with lattice models, evidence for the dynamical facilitation
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approach has been obtained in experiment [13—15]. Like
the thermodynamic approaches noted above, the notion of a
phase transition is pivotal, but now the transition is between
two dynamic regimes: the supercooled liquid and a state
with extremely slow dynamics [16]. The mathematical
framework is that of statistical mechanics combined with
large deviations [17]. The transition shares many similar-
ities with the disorder-order transition of an Ising magnet—
the crucial conceptual differences being that configurations
are replaced by trajectories (i.e., time sequences of con-
figurations) and that the order parameters consider the
time-integrated quantities such as particle motion instead
of magnetization. That is to say, the dynamical transition
we consider (via a generalized or “dynamical” chemical
potential) does not explicitly pertain to the motion of the
particles but rather to a phase transition in trajectory space,
based on time-integrated quantities. What is meant by
dynamical is that we consider time-integrated quantities
over trajectories, but those quantities themselves may be
based on static information, derived from configurations
along the trajectory. An intriguing prediction is the coex-
istence between the two dynamical regimes, which, in
lattice models, is predicted to terminate at two critical
points (one at high temperatures and one at low temper-
atures) [18]. While numerical evidence supports coexist-
ence and a first-order nonequilibrium transition in
trajectory space [16,19], the putative lower critical point
remains out of reach for direct numerical investigations in
atomistic models. Whereas the operational glass transition
is a consequence of the exceedingly long relaxation times
of deeply supercooled liquids, the nonequilibrium phase
transition in trajectory space is a genuine phase transition,
originating from nonanalyticities in the derivatives of the
nonequilibrium equivalent of free energies (i.e., the large
deviation functions of time-integrated observables [17]).
Recently, such dynamical phase transitions have become
accessible to particle-resolved experiments [14,15].
Returning to the idea of a thermodynamic transition, a key
aspect is some kind of structural change. While such
structural changes appear to be minor when looking at
two-point measures like the structure factor, higher-order
measures reveal a richer behavior [20-25]. In particular, the
population of geometric motifs, so-called LFS, shows a
strong temperature dependence [20]. Indeed, the nonequili-
brium transition to a state with very low particle mobility can
be driven by increasing the LES population [26], indicating
that these structural changes are not only a by-product of
cooling but also play a crucial role in the dynamic arrest.
This finding is corroborated by simulations showing that
single-particle motion and LES are correlated [27].
Numerical simulations are an indispensable tool to gain
microscopic insights. However, accessible time scales are
still 9—10 decades away in relaxation time from the opera-
tional glass transition temperature, and more indirect meth-
ods have to be devised to gain insight into the nature of the

glass transition. For example, pinning (or confinement) of
particles [28-30] shifts the putative thermodynamic tran-
sition into the time window accessible to computer simu-
lation, as does the observation of distributions of overlaps in
configurations of particles [31]. Another method to generate
deeply supercooled, equilibrated configurations is that of
particle swaps [32,33].

Here, we introduce a new and powerful numerical
method to tackle the challenge of determining the low-
temperature equilibrium behavior of a popular atomistic
glassformer, the Kob-Andersen binary mixture [34]. This
model is loosely based on the metallic glassformer NigyP5.
Unlike previous approaches, our method enables a con-
nection between nonequilibrium phase transitions (i.e., the
approach of dynamic facilitation [12]) with more structure-
based theoretical approaches which assume a thermody-
namic phase transition. In particular, we use this method to
extract configurations with exceptionally low configura-
tional entropy and energy.

Our numerical method exploits three effects: First, the
central configurations of biased trajectories contain many
locally favored structures. Second, a higher population of
LES facilitates the sampling of configurations with low
energies even at moderately supercooled temperatures. We
develop methods to remove the simulation bias, which
allows us to access not only the simulated state point but
also an extended temperature range in its vicinity. The third
effect is that the contribution to the total free energy from
the local minima in the potential energy landscape and from
the vibrational free energy decouple [35]. This allows us to
access equilibrium properties at configurational temper-
atures T (as opposed to the conventional thermodynamic
temperature) different from the sampling temperature 7';.

Using the described method (along with particle swaps
[33,36] adapted to the binary Kob-Andersen system with
“ghost insertion” [37]), we perform extensive biased sim-
ulations of the Kob-Andersen mixture, from which we
construct part of the phase diagram for the time-integrated
first-order transition from a LFS-poor phase (the normal
liquid) to a LFS-rich phase. We find numerical evidence that
coexistence between these phases is terminated at a finite
temperature, implying a lower critical point eventually
accessible to the equilibrium system—were it cooled suffi-
ciently slowly. This scenario has significant consequences
because the dynamical transition at a higher temperature
allows us to probe glassy configurations that are typical of
much lower temperatures while circumventing the prohibi-
tive increase of equilibration times. We are thus able to probe
the low-temperature fate of this model glassformer.

II. METHODS

A. Model

The Kob-Andersen binary mixture [34] consists of 80%
large particles and 20% small particles interacting through
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Relaxation time and configurational entropy of the Kob-Andersen mixture. (a) The relaxation time (black circles) strongly

increases as a function of inverse temperature. This is fitted with the Vogel-Fulcher-Tamman expression Inz, o (T — T )~! (solid line),
which we take to diverge at T (arrow). Along with the relaxation time, the average population (n) of LFS (red squares, see inset for a
rendering of the structure) increases upon cooling. The red line is an empirical two-parameter fit to Eq. (2). (b) The probability
distribution of the inherent state energy ¢ is Gaussian (dashed line, shown for sampling temperature 7, = 0.5). (c) Collapse of the
configurational entropy s(¢) for three different sampling temperatures and fitted by a quadratic form (continuous line) down to very low
energies. The energy ¢y = —7.82 at which the entropy would vanish is obtained from an extrapolation. In the inset, we use ¢k to
estimate Ty =~ 0.30 by extrapolating molecular dynamics results (black circles).

truncated and shifted Lennard-Jones pair potentials. We
employ the original potential parameters. All numerical
values are reported in Lennard-Jones units with respect to
the large particles, and we set Boltzmann’s constant to
unity. Simulations are performed for a system of N particles
at number density N/V = 1.2 in a periodic box with
constant volume V. We employ the Andersen thermostat
at sampling temperatures 7, = 0.74, 0.73, 0.7, 0.6, 0.55,
0.5, 048. Newton’s equations of motion are solved
using Verlet’s velocity algorithm with time step 0.005
[38]. Trajectories are then stored as discrete sequences
X ={C_g2...-.Co, ....Cx 2} of configurations for lengths
K =60 and K =100. The time between successive
configurations is chosen such that trajectories have a
physical duration of ¢, =~ 4.57,,7.5t,, respectively.
Upon cooling, the structural relaxation time increases
faster than exponentially (super-Arrhenius behavior)—see
Fig. 1(a). Whether the relaxation time diverges at a finite
temperature is still debated [39,40].

B. Order parameters

In the following, we focus on two order parameters
characterizing the liquid. First, the time-integrated order
parameter

K/2

S n(e) (1)

i=—K/2

characterizes trajectories by counting the total number of
particles in locally favored structures, where n(C) is the
fraction of particles in LFS in configuration C. For the
specific model considered here, the LFS corresponds to a
bicapped square antiprism formed by 11 particles as
sketched in the inset of Fig. 1(a). We detect this motif
by employing the topological cluster classification method

[23,41]. The temperature dependence of the LFS popula-
tion is fitted with the empirical Fermi function

(n) =[1+(T/T )" <1 (2)

with fitted exponent a = 2.5 and temperature 7'/, = 0.25
at which the population extrapolates to 1/2. The increase in
LFS concentration [cf. Fig. 1(a)] has been shown to
correlate well with the propensity of particle mobility on
lowering the temperature [27].

Steepest descent quenches of the central configurations
Cy to the local minima of the energy landscape yield the so-
called inherent states [42], which may be thought of as
particle configurations with the thermal noise removed.
These inherent states CiOS constitute the local minima in the
energy landscape around which particles vibrate before
relaxing to another local minimum. While in a perfect
crystal there would be only one inherent state, in the liquid
there are many different particle arrangements, and the
number of these accessible amorphous inherent states
defines the configurational entropy.

Our second, static order parameter is thus the inherent
state energy (ISE) per particle ¢[X] = U(CL) /N of the central
configuration of trajectory X, where U(C) is the potential
energy of particle configuration C and C™ is the correspond-
ing inherent state. This is distinct in nature from the time-
integrated order parameter in Eq. (1).

Practically, the ISE ¢ of central configurations C, is
obtained using the FIRE algorithm [43] limited to 1000
iterations in order to make the generation of long sequences
of trajectories computationally feasible. Ground states of
equivalent energies have been obtained by employing basin
hopping techniques [44], confirming that the reported
values for ¢ should be understood as upper (although
tight) bounds to the true inherent state energies.
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C. Biased simulations

We go beyond the temperature regime that is accessible
in conventional molecular dynamics simulations. To this
end, biased simulations with N=216 and N = 400 particles
are run at a moderately supercooled sampling temperature
T, to faster explore phase space while at the same time
sampling configurations with very low potential energy
and a high population of LFS representative of low
temperatures. To improve the sampling, we employ replica
exchange [19]. We simultaneously extract time-integrated
and static information (central configuration) by harvesting
trajectories of length 7., which we choose to be a few
structural relaxation times ., ~ 4.57, and #,,, = 7.57, for
runs with K = 60 and K = 100 configurations, respectively.

We employ the multistate Bennet acceptance ratio
estimator [45,46] in order to calculate expectations and
distributions from the biased numerical data. For an
arbitrary observable A[X], this amounts to evaluating the
expression

<Ae—(1/T—1/T5)N¢+/4J\/>

(A)rp = (e=(/T=V/TING+uN'y ®)

where (-) indicates the average over the sampled trajecto-
ries at sampling temperature 7';. Here, T denotes the target
configurational temperature and y the dynamical chemical
potential.

In practice, our numerical approach allows us to improve
the sampling of trajectories (and configurations) that are
rare for a given sampling temperature 7', explicitly favor-
ing trajectories with exceptionally large (or small) overall
concentrations of LFS n by performing importance sam-
pling in trajectory space. Transition path sampling [47] is
performed according to the structural bias in n; however,
any observable (including both ¢ and n) can be simulta-
neously tracked, and its correct probability distribution,
and, in particular, its mean value, can be recovered by
reassigning the correct weight to each trajectory, as
illustrated by Eq. (3).

D. Temperature reweighting

The harvested trajectories also yield equilibrium
expectation values beyond the sampling temperature for
observables A[X] = A(C'®) that depend on inherent state
configurations C'* only, provided that (i) configurations
are sampled according to the Boltzmann weight o e=V(€)/7s
(at the sampling temperature 7) and (ii) vibrations are
independent of the inherent state. Previous work [35] has
demonstrated via thermodynamic integration that for suffi-
ciently low temperatures (7" < 0.8), the contribution of the
inherent state energies to the free energy decouples from the
vibrational contribution. This satisfies condition (ii), while
condition (i) is ensured by our sampling technique.

The key aspects of our technique are then as follows. To
show how it is possible to extract the equilibrium statistics
of inherent state energies from the trajectory sampling at
temperatures distinct to 7'y, we split the total potential
energy into two contributions:

U(C) = Ng(C*) + 8U(CIC*), (4)
where SU(C|C') indicates the extra potential energy of a
configuration C compatible with the inherent state con-
figuration C.

Using such a decomposition, we can evaluate the thermal
average (-) of the following expression:

/ s
_19N(/) Z Z A CN —19N(/) T (5)
CN Clcls ( )
— Z Z A(CS) e (WD=(/T))NG
Cis C‘cis
Z(Ty)

with partition sum Z(T)=> e V©)/T and 9=1/T-1/T,.
We then define the restricted partition sum

Ze—au/T (7)

Clcla

T‘Clb

sampling the fluctuations out of the inherent state C'. If the
restricted partition sum is approximately independent of the

inherent state, Z(T|Cis) ~ Z(T), we can rewrite Eq. (5) as

ZA Cls —Np(C®)/ (8)

5 Cis

(Ae™NP) =

Finally, this expression can be used to compute the
reweighted average (-)7, evaluated at equilibrium y =0
in Eq. (3), and we can obtain

EcisAe_N¢/T
Zcis e_N¢/T ’

corresponding to the equilibrium expectation of A at temper-
atures T # T, different from the sampling temperature.

<A>T.ﬂ:0 = ©)

1. Ghost-particle Monte Carlo technique

In order to compare our trajectory sampling results
with an alternative equilibrium technique, we perform
Monte Carlo simulations where we perturb the
Hamiltonian of the system in order to favor local relaxation
of caged particle arrangements.

The method is inspired by ghost-particle insertion [37]
and swap Monte Carlo algorithms [33,36]. In our imple-
mentation, a subset of the particles in the system is
associated with a stochastic variable that determines the
maximum repulsive forces acting on the particles of the
subset. This facilitates local cage breaks and relaxation. The
particles that interact via this capped potential are reselected
randomly after a certain number of iterations and are called
“ghost” particles, hence the name of the method. The
random walk of the stochastic variable satisfies detailed

031028-4



NONEQUILIBRIUM PHASE TRANSITION IN AN ...

PHYS. REV. X 7, 031028 (2017)

balance and includes states for which the Hamiltonian is that
of the unperturbed system. We record those states and
compute the average inherent state energy (¢) from an
equilibrium distribution of configurations [37]. For more
details on the method and the algorithm, see Appendix A.

III. RESULTS

Our results are twofold. First, we describe our reweight-
ing procedure to obtain configurations representative of
exceedingly low temperatures, far beyond the regime
accessible to conventional techniques. This shows that
the configurational entropy and inherent state energy are
both compatible with a transition to a state of very low
entropy at a finite temperature 7x. We then proceed to
consider the behavior of the system in the space of the
nonequilibrium phase transition (7, ). We show that the
nonequilibrium phase transition appears (upon extrapola-
tion) to be bound from below, with a lower critical point T...
This lower critical point lies close to Tk (or perhaps even at
Tk). We discuss how this proximity of the lower critical
point and Tk may allow some union of the different
approaches to the glass transition.

A. Configurational entropy

We first focus on the behavior of the central configu-
rations. Our simulations sample configurations with a wide
range of inherent state energies, which we compile into
distributions p(¢) for the different sampling temperatures.
In agreement with previous studies [35,48], we find that
these distributions are well described by a Gaussian [see
Fig. 1(b)]. Moreover, it has been demonstrated that at low
enough temperatures (including the sampling temperature
0.48 < T, <0.7 used here), the vibrational free energy is
independent of ¢ to a very good approximation [35].

Let Q(¢) x QeV??)5¢p be the number of amorphous
inherent states with energy per particle ¢ within an interval
¢+ 6¢/2. Here, o(¢) is the enumeration function and
Q. = M= is the maximal available volume in configu-
ration space, i.e., the high-temperature case where s, is the
configurational entropy. The (configurational) temperature
T corresponds to the inverse slope, do/d¢ = 1/T. In the
limit of large N, the number Q is either extensive or it
becomes exponentially small. Hence, in the thermody-
namic limit, the extensive configurational entropy becomes
InQ(¢p) = Ns(¢p), with s(¢p) = s, + 6(¢p) for ¢ > ¢x and
s(¢) = 0 for extreme inherent state energies ¢p < ¢bx. Here,
¢x = —7.82 is the inherent state energy of the system at the
Kauzmann temperature 7.

The Gaussian shape of Q(¢) implies that the enumer-
ation function we extract, o(¢), should be quadratic,
o(¢) = —(¢p — ¢s)?/J?, from the measured distribution
with fitted maximal energy ¢, = —7.38 and energy scale
J =0.502. The resulting configurational entropy s(¢) =
Seo + o(¢p) is plotted in Fig. 1(c) using the value s, = 0.74

reported previously [35]. Our numerical scheme is thus able
to cover a wide range of inherent states, and the excellent
agreement demonstrates that the configurational entropy of
the liquid is indeed very well described by a quadratic
function.
For the thermal average of the inherent state energy,
one finds
12

as a function of temperature 7. While we make the distinction
between configurational and conventional thermodynamic
temperature, for quantities based on inherent states, such as
the inherent state energy itself, the configurational temper-
ature corresponds to the conventional temperature.

The scenario that (¢) = ¢x is reached at a finite
temperature Ty is shown in Fig. 1(c) by extrapolating
simulation data. Figuratively speaking, at this temperature,
the liquid would “run out” of amorphous configurations
and would undergo a thermodynamic phase transition to an
ideal glass with constant inherent state energy ¢x and very
low entropy. Although the existence of such an ideal glass
state is debated on several grounds, e.g., in Refs. [49,50],
we keep ¢ as a convenient estimate for the lowest energy
accessible to amorphous configurations. Extrapolating the
quadratic form for s(¢) to lower energies, one derives
Ty =J/(2/5) for the Kauzmann temperature, yielding
Tx =0.3 for the present system, in agreement with
previous estimates in the range 0.297 < Ty < 0.325
[26,35,51]. This value is compatible with an extrapolation
of molecular dynamics data for the average ISE (¢), which
we show in the inset of Fig. 1(c). Comparing with the
increase of 7, [Fig. 1(a)], it is clear that Tk is far below
temperatures for which the liquid can be equilibrated in
computer simulations.

In Fig. 2, the average inherent state energy (¢)r,_o
is shown as a function of (configurational) temperature
T employing our scheme, showing good agreement with
data obtained from molecular dynamics simulations and
with data obtained from the ghost-particle Monte Carlo
technique that promotes relaxation via the usage of
staged, capped potentials (see Appendix A). We observe
that the results from trajectory sampling for the lowest
sampling temperatures are in good agreement with Eq. (10)
down to T = 0.37, where the relative deviations start to
exceed 0.1%. At T, = 0.48, 0.50, the average inherent
state energy departs from Eq. (10) for 7 < 0.37, and
glassy, amorphous, very-low-energy states are obtained.
These are inaccessible to conventional techniques since
the relaxation time is expected to be, via extrapolation,
7o(T = 0.37) > 10*t,(Tyc = 0.435). Assuming that the
Kauzmann energy ¢y represents the “bottom” of the
energy landscape of amorphous states, then we expect that
for T < Tk, there should be no further reduction in (¢),
which is indeed supported by our data for successively
lower sampling temperatures 7.

(10)
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FIG. 2. Importance sampling of inherent state energies at

sampling temperatures 7, = 0.60, 0.55, 0.50, 0.48. The dotted
line indicates the prediction of Eq. (10) for the equilibrium liquid,
filled circles represent the values obtained from unbiased
molecular dynamics simulations, and yellow triangles indicate
the equilibrium values obtained via a ghost-particle Monte Carlo
(gMC) technique (see text and Appendix A). Deviations from
the equilibrium liquid occur only at low 7" and become smaller if
the sampling is performed at lower T,. Also indicated is the
putative value of the Kauzmann temperature T and the corre-
sponding energy of the equilibrium liquid. Notice that trajectory
sampling at 7, = 0.50, 0.48 outperforms the longest Monte Carlo
calculations at the lowest temperatures, reaching much deeper
inherent state energies. In particular, the lowest temperature
estimate of the inherent state energy in the gMC shows that
the Monte Carlo technique can also remain trapped in long-lived
metastable states similar to the ones obtained via trajectory
sampling at high T';.
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B. Trajectory-space phase transition from
LFS-poor to LFS-rich states

We now consider the full trajectories rather than the
central configuration as above. Formally, one can treat the
particles in LFS and non-LFS (free) particles as two
chemical species with the same chemical potential, which
interconvert freely. The extension to ensembles of trajecto-
ries is, at least formally, straightforward, with y the dynami-
cal analog of the chemical potential difference. Unbiased
equilibrium dynamics corresponds to g = 0. In line with
physical intuition, positive u > 0 gives trajectories with
larger populations a higher weight, which is demonstrated in
Fig. 3(a). Here, we show the average population (n)7 , of
LFES as a function of u for the three sampling temperatures.
At some p, > 0, there is a sharp increase of the population,
indicating a transition from the normal supercooled liquid
(LFS poor) to a state composed of trajectories with a large
number of LFS (LFS rich). Indeed, it has been shown that the
transition becomes sharper for larger systems [26], where
“larger” can be both larger ¢, (longer trajectories) and
larger N (more particles while holding the density constant).
This implies a first-order transition in trajectory space,
where the jump of the order parameter (the population of
LES) is rounded by finite-size effects [52]. Practically, the
value of u at which the transition occurs, ., is determined
from the peak of the susceptibility,

a<n>TS,/4
Op

maximizing the fluctuations of the order parameter n as
shown in Fig. 3(a). The susceptibility measures the sensi-
tivity of the population of LFS along the trajectory to a
change in the field strength u. This becomes very large close

x(u) = : (11)

02 Tx 04 0.6 0.8

T

The inherent state energy drops across the dynamical transition. (a) Signature of the dynamical phase transition: The average

trajectory population (n)r , of LFS (continuous lines) shows a sudden increase at a nonzero x. Top panel: The susceptibility y(u)
quantifying the magnitude of fluctuations in LES populations is shown, the peak of which defines yu,. Around the same 4, , the average
ISE ()7, of central configurations (dashed lines) drops substantially. (b) Logarithm of the joint probability of LFS population n and
ISE ¢, for Ty, = 0.55 and u = 0.005 =~ 0.7u,.. (c) Typical energies of the two populations as a function of temperature: LFS-poor states
(circles) essentially follow the equilibrium liquid curve (dotted line), while LES-rich ones (filled triangles) are characterized by much
lower energies, with a T,-dependent tail at low temperatures. Inset: ISE probability distribution p(¢) evaluated at 4 = p, for T = 0.55.
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to the phase transition and is expected to diverge in the limit
of infinite system size. Note that when decreasing the
sampling temperature, the peak position moves towards
u =0, which corresponds to the unbiased, equilibrium
system, i.e., the one encountered in experiment. Moreover,
upon decreasing temperature, the peak height y, = y(u.,)
grows. We return to the intriguing question of the low-
temperature behavior of u, below.

Having identified a LFS-poor and a LFS-rich phase, in
Fig. 3(a) we show that the transition is accompanied by a
complementary drop of the inherent state energies of

central configurations [53]. Indeed, looking at the joint
distribution of n and ¢ in Fig. 3(b), two distinct populations
of trajectories can be identified. In particular, trajectories
with a large number of LFS feature central configurations
that typically have low inherent state energy.

From the marginal distribution of ISE [inset of Fig. 3(c)],
we extract the two typical values @0 and ¢y, for LES-
poor and LFS-rich states, respectively, as a function of
configurational temperature 7', using Eq. (3). We plot these
in Fig. 3(c). The inherent state energies for the LFS-poor
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FIG. 4. Phase diagram for the dynamical transition and possible scenarios for a lower critical point. (a) Coexistence in the T — i phase
diagram, with p, scaled by the trajectory length. Linear extrapolation implies 7', (#, — 0) = 0.37 (black dot) close to Tx = 0.30 (purple
square). Inset: Susceptibilities y of the LFS population labeled by their sampling temperatures for a system for N = 216 and
tops = 4.57,, showing a nonmonotonic behavior with increasing peak heights at low and high temperatures. Two snapshots of LES-rich
and LFS-poor configurations are also illustrated, with the non-LFS particles in white and pale blue. (b) Coexisting populations for
N = 216 particles and several sampling temperatures (filled symbols show 7., & 7.57,; empty symbols show 7y, ~ 4.57,) and N = 400
at T, = 0.6 (larger empty symbols). Green stars denote n.(T) = (n)y, fitted to a linear function (dashed-dotted green line).
Additionally, coexisting populations at temperatures lower than 7 = 0.48 are obtained from nonequilibrium molecular dynamics at
constant temperature (NVT) with LFS-rich initial conditions, as discussed in Appendix. A possible coexistence region is sketched
(shaded area). The unbiased equilibrium dynamics [red continuous line, Eq. (2)] passes through the supercooled, LFS-poor liquid. We
show the scenario of a lower critical point of the dynamical transition at 7', passed by the unbiased dynamics at a crossing temperature
T, with Ty = T, = T,. Inset: Example for the determination of the coexisting LFS populations from the peak positions of histograms
p(n) evaluated at yu = p, for Ty = 0.60 and 7, = 4.57,. Finally, panels (c—e) are sketches for alternative scenarios, with panels (f-h)
being their counterpart in the 7 — u space: In panels (c,f), the coexistence region extends down to 7 = 0; in (d,g), two critical points
bound the coexistence region with the equilibrium line approaching the lower critical point in an “avoided transition” scenario; and in
(e,h), the liquid undergoes a weakly first-order transition at low temperature. At the onset temperature 7, and above, dynamical
heterogeneities vanish, and in its vicinity, we schematically locate an upper critical point bounding the coexistence region.

031028-7



TURCI, ROYALL, and SPECK

PHYS. REV. X 7, 031028 (2017)

liquid follow the prediction of Eq. (10) for the average
inherent state energy and are therefore indistinguishable, up
to our numerical precision, from the equilibrium liquid. In
contrast, the much lower ¢, shows a more complex
behavior: At high temperatures, the different 7'y converge at
the same energy, which is a slow monotonically increasing
function of the configurational temperature 7. For the
lowest temperatures 7', there is a systematic dependence on
the sampling temperature 7', with the lower Ty allowing us
to better sample lower energy states and thus leading to
lower average ISE. Because of the much weaker depend-
ence on T of ¢y, the energy gap @poor — Prich 18 reduced
with decreasing 7', which suggests the existence of a finite
temperature at which the two energies reach the same value
and the gap vanishes. In other words, we expect a low but
finite temperature at which the equilibrium liquid becomes
indistinguishable from the low-energy, LFS-rich phase.

C. Nonequilibrium phase diagram

We draw together our results in a nonequilibrium
phase diagram where both the equilibrium liquid and the
nonequilibrium coexistence are represented [see Figs. 4(a)
and 4(b)]. To construct the nonequilibrium phase diagram,
we determine the populations 71,4, and 7y, of the coex-
isting LFS-poor and LFS-rich states, respectively. To this
end, we produce histograms of the LFS population at
u =y, and determine the positions of the two peaks
corresponding to each phase [see Fig. 4(b), inset]. These
populations delimit the coexistence region, as shown in
Fig. 4(b), for several sampling temperatures. They agree
within errors for different trajectory lengths and system
sizes (N =216 and N =400 particles). The unbiased
equilibrium dynamics with 4 = 0 corresponds to a line
in the (7, n) plane as shown in red in Fig. 4(b); any point
away from this line corresponds to a nonequilibrium state
with u # 0. For the temperatures that we can sample
directly, the LFS population in the equilibrium liquid lies
close to the spread of the data for the LFS-poor region.

IV. DISCUSSION

A. Lower critical point of the nonequilibrium
phase transition?

The existence of a thermodynamic phase transition for
glass-forming fluids is widely debated [2,3,12,49]. In the
case of the Kob-Andersen mixture, there are several pieces
of numerical evidence pointing towards a transition at
temperatures substantially below the mode-coupling tran-
sition temperature 7y == 0.435: (i) Thermodynamic inte-
gration [35] provides, through an extrapolation, an estimate
for a finite Kauzmann temperature Ty at which the
configurational entropy vanishes. (ii) As previously men-
tioned, relaxation times can be thought to diverge in the
vicinity of Tk, providing a dynamical description of the
transition [see Fig. 1(a)]. (iii) Recent equilibrium

simulations [29] in the presence of a variable concentration
of pinned particles ¢ show that, in the limit of vanishing
¢ — 0, a transition between a more and a less “glassy”
thermodynamic state (as indicated by the so-called overlap
order parameter—see Ref. [29] and references therein)
can be inferred at a nonzero temperature close to Tg.
(iv) Finally, the same overlap order parameter [54] has been
used to show that static fluctuations exist for 7" < 0.5,
consistent with the existence of a random-field-like critical
point predicted by effective field theories [55,56].

However, it is well known that the Vogel-Fulcher-
Tamman fit is not the only—nor even the best—fit to
the structural relaxation time [39]. Others, which do not
imply a thermodynamic transition, give as good of a
description [11,57]. Furthermore, the dynamical aspects,
in the sense of particle mobility of the nonequilibrium
transition that we study, cannot be overstated, whether they
are generated dynamically [16] or by structural averaging
along trajectories, as in our case. These nonequilibrium
phase transitions lead to an inactive state whose time
correlations do not decay on the simulation time scale.
In other words, the inactive phase is a glass, consistent with
the dynamic facilitation scenario, which posits that there is
no thermodynamic phase transition.

In the scenario we consider here, the thermodynamic
behavior of the system follows from the more general
description of its nonequilibrium phase diagram, where the
equilibrium limit corresponds to 4 — 0. We find compelling
numerical evidence for a coexistence region between LFS-
rich and LFS-poor trajectories, at least in the temperature
interval 0.48 < T, < 0.74, directly probed by the biased
simulations. The temperatures at which the distinction
between LFS-rich and LFS-poor trajectories ceases would
identify an upper and a lower critical point to the non-
equilibrium phase transition, the locations of which are
inferred by extrapolation. In particular, the precise location
of the lower critical point 7. with respect to the line
corresponding to the equilibrium liquid allows for a con-
nection between the putative thermodynamic transition at
Tk and the dynamical phase transition determined in the
present work. In the following, we discuss our evidence for a
thermodynamic transition and also consider alternative
scenarios.

B. Numerical evidence for a thermodynamic
transition and critical point

To interpret our numerical results, we first consider the
extrapolation of the dynamical chemical potential yu, at
coexistence. In Fig. 4(a), we illustrate the phase diagram in
the 7 — p plane, with the coexistence region being repre-
sented by a line separating the LES-poor from the LFS-rich
trajectories. Here, we have plotted the different values of
chemical potential y, at coexistence for different sampling
temperatures 7'y, scaled with the trajectory length 7, and
we observe that they collapse onto a common master curve.
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Down to the coldest sampling temperature 7'y = 0.48,
u.(T) follows a linear behavior, whose extrapolation to
u, = 0 provides a second estimate for a crossing temper-
ature T, (u, — 0) = 0.37, 23% higher than the estimate for
the Kauzmann temperature 7'y = 0.3. We observe [inset of
Fig. 4(a)] that the position of the maximum of the
susceptibility y(x) moves from very large values of u, at
high temperatures (i.e., very rare fluctuations) towards
u =0 (ie., typical equilibrium fluctuations) for lower
temperatures. This is accompanied by a nonmonotonic
behavior of the peak amplitude, suggesting critical-like
fluctuations at some finite high temperature (which, for
physical reasons, we relate to the onset of glassy dynamics)
and a low temperature 7',. If we only fit the coexistence
points in the 7 —u plane inside the regime for which
inherent states are well defined and the susceptibility peak y
is monotonically increasing as we decrease the temperature
[T <0.60, see inset in Fig. 4(a)], the linear fit provides a
lower estimate for T, = 0.33 closer to the estimate of the
Kauzmann temperature.

Our second piece of evidence for a thermodynamic
transition comes from the population of LFS at coexistence
between the LFS-rich and LFS-poor phases, n,(T) =
(n)r,, - To do this, we cast the phase diagram in the
T — n plane. As shown in Fig. 4(b) (green dashed line),
the dependence of n, upon temperature is linear to a very
good degree. Extrapolating towards lower temperatures, it
crosses the equilibrium (¢ = 0) line at a “crossing” temper-
ature T, with n,(T,)=(n)z_,_o, Which implies np,,, =
Nyich- The crossing of both lines occurs at 7', (1poor = Myich) =
0.31, close to the estimated value for the Kauzmann
temperature T = 0.30.

Our third piece of evidence stems from the inherent state
energies. We note that the inherent state energy of the LFS-
rich configurations in Fig. 3(c) is approximately linear,

Giicn(T) = ¢po + 1T, (12)

with fitted ¢y = —7.82 (note that ¢y ~ ¢px) and y = 0.18
for the lowest sampling temperature. Assuming that the
vibrational free energy and that of the inherent states
still decouple, for any transition, the configurational tem-
peratures (i.e., the slopes of the configurational entropies
of the LFS-rich and LFS-poor phases) have to agree.
For a putative continuous transition, we equate the inherent
state energy [using the equilibrium liquid, Eq. (10)
for the LFS-poor and Eq. (12) for the LFS-rich phase]
and find ¢(T) = —7.76, with corresponding temperature
T (¢rich = Ppoor) = 0.33, which also provides an estimate
for the temperature at which the two phases are indistin-
guishable, the nonequilibrium critical temperature 7.
Finally, the information contained in the narrowing
of the gap between the inherent state energies of the
LES-rich and LFS-poor phases can be translated into the
T —n phase diagram through additional numerical

nonequilibrium simulations. The estimate of the inherent
state energy of the LFS-rich phase at low temperatures is
used (see Appendix B) to select a representative population
of configurations. We then use these as initial configura-
tions for molecular dynamics simulations at temperature 7',
which explore a metastable basin and eventually relax to
the equilibrium liquid state. We assume that the LFS-poor
liquid nucleates within the LFS-rich liquid; therefore, we
determine the characteristic time for nucleation z,yp, and
the LES populations before and after nucleation. These
populations are then employed as estimates at temperatures
for the coexisting LFS-rich and LFS-poor densities, respec-
tively [see Fig. 4(b)]. We notice that our estimate for the gap
Mich = Mpoor NAITOWS frOM 7y — Mpoer = 0.15(1) at T =
0.70 t0 Myigh = Mpoor = 0.09(1) at T = 0.40.

Although relying on extrapolations, these four pieces of
numerical evidence indicate that the dynamical transition
from LFS poor to LES rich would become accessible for the
equilibrium supercooled liquid, provided that it is cooled
sufficiently slowly and that crystallization does not interfere.
From the numerical data, we can bound the crossing
temperature 7', at which the equilibrium (LFS-poor) liquid
becomes undistinguishable from the low-energy, LFS-rich
amorphous phase, obtaining 0.31 < 7, < 0.33. This range
is intriguingly close to previous estimates of the Kauzmann
temperature 7Ty == 0.30 at which a thermodynamic phase
transition has been predicted [29,35]. Moreover, from the
narrowing of the gap between the LFS-poor and LFS-rich
coexisting phases, we infer that a lower critical point exists at
a temperature 7., terminating the nonequilibrium coexist-
ence region between LFES-poor and LFS-rich trajectories.

C. Low-temperature fate of the supercooled liquid

Our numerical precision does not enable us to distin-
guish the equilibrium liquid and the LFS-poor phase, that is
to say, T, ~ T.. However, considering the precise location
of the nonequilibrium critical point 7, with respect to
T, we obtain three possible scenarios: First, the critical
temperature 7. > T is higher, in which case no equilib-
rium transition occurs but is closely passed (an avoided
transition) [Figs. 4(d) and 4(g)]. At Ty, the equilibrium
system then crosses the line emanating from the non-
equilibrium critical point where the fluctuations are
maximal (sometimes called the “Widom line” [58,59])
[see Fig. 4(d)], analogously to some scenarios in softened
kinetically constrained models [60]. Second, in the case
where T,.=T,, the equilibrium unbiased dynamics
crosses through the critical point, and a continuous
transition occurs, as depicted in Fig. 4(b). The final
possibility is that the nonequilibrium critical point lies
below the crossing temperature, 7. < T. In this case, the
equilibrium transition, corresponding to the crossing of
the coexistence region with a small but finite increase of
the LFS concentration, would be (weakly) first order, as
sketched in Figs. 4(e) and 4(h).
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Before concluding, we emphasize that our discussion
concerns the linear extrapolation of the dynamical chemical
potential u, and LFS population n, at coexistence, a
supposition that the inherent state energy continues as
indicated in Fig. 2 and that the relaxation time follows
the VFT prediction. Other alternatives are possible, such as a
more gradual approach to a state of very low configurational
entropy, which could be met only at 7 = 0. This could be
related to “defects” in the amorphous order [49]. Other
scenarios have been suggested in which yu. (T) approaches
equilibrium [, (T) = 0] more slowly at lower temperatures,
only reaching zero at T = 0 [61], as depicted in Figs. 4(c)
and 4(f). These would imply deviations in the relaxation
time from the VFT behavior. It is even possible that these
effects lead to behavior similar to the one we discuss but at a
lower temperature than our extrapolations suggest.

V. CONCLUSIONS

By means of numerical simulations employing trajectory
sampling, we have explored the connection between a
dynamical phase transition and the low-temperature thermo-
dynamics of a model atomistic glassformer. We have used
locally favored structures as an order parameter to bias the
simulations in trajectory space at a given sampling temper-
ature. Thus, we have shown that this is a powerful and
reliable method to obtain equilibrium and thermodynamic
information (such as the inherent state energies and the
configurational entropy) down to exceptionally low temper-
atures. This is because trajectory sampling facilitates the
exploration of states that are exponentially unlikely to be
accessed in a conventional molecular dynamics simulation.

Employing the probability distributions obtained, we
show that the dynamical phase transition in trajectory space
implies a bimodal distribution of inherent state energies:
For the equilibrium dynamics, most of the configurations are
compatible with a high-energy, locally favored structure-
poor state: the normal liquid. However, we also reveal that an
amorphous, LFS-rich, low-energy state exists and is acces-
sible when the dynamical chemical potential 4 is tuned away
from zero [26]. We also determine the temperature depend-
ence of the energy gap between the two states, which
provides numerical evidence for a lower critical point at a
nonzero temperature 7., where the high-energy (LFS-poor)
phase would be indistinguishable from the low-energy
(LFS-rich) phase. This is further corroborated by the
temperature at which the first-order dynamical phase tran-
sition appears to cross the unbiased dynamics (4 = 0).
Numerically, we find that the temperature 7'. is close to
the Kauzmann temperature estimated from our configura-
tional entropy measurements. We confirm our findings with
particle swap methods that we have tailored for this system.

Our results support the idea that the low-temperature fate
of supercooled atomistic glassformers is determined by the
fluctuations of the population of local structures, which
couples with the reduction of configurational entropy.

There is now ample numerical and experimental evidence
that particle dynamics, at least for a class of model
glassformers [20,23,27,62], is correlated with the presence
of LFS. We observe a nonequilibrium phase transition
between two phases in trajectory space, LFS-poor and LFS-
rich phases. The former is, given our numerical precision,
indistinguishable from the equilibrium liquid. The latter
exhibits very slow dynamics [26]. Glassy phenomenology,
such as dynamical heterogeneities and the emergence of
slow dynamics, may be related to this nonequilibrium
phase transition in trajectory space. Our numerical data
provide evidence that the transition may terminate at a
lower critical point close to the Kauzmann temperature 7.

The connections we identify between dynamical coex-
istence, the distinct basins in the energy landscape, and the
location of a low-temperature nonequilibrium critical point
close to the equilibrium (¢ — 0) path in the nonequilibrium
phase diagram provide the ingredients for a novel under-
standing of the low-temperature fate of supercooled liquids.
In particular, our work opens a potential avenue to unify
the competing theories that have been developed in order
to understand the microscopic origin of slow glassy
dynamics: On one hand, the thermodynamic picture of a
decreasing configurational entropy, vanishing at a finite
temperature around 7'g, is compatible with the emergence
of the low-energy, low-entropy, LFS-rich state that we have
identified. On the other hand, our results suggest that down
to Tk, this state may be in coexistence in trajectory space
with the normal equilibrium liquid and that the glassy
phenomenology may be related to the vicinity of the
equilibrium line to this nonequilibrium phase coexistence.
Within this approach, structural and dynamical aspects
are combined, and they play a complementary role. We
emphasize that our conclusions rely on extrapolation. Other
possibilities, including a continuous decrease of the con-
figurational entropy such that it approaches zero only as
temperature also approaches zero, are possible. That is to say,
our results do not exclude the possibility that there is no
vanishing of configurational entropy or indeed any transition
at Tx [61]. Further alternatives include a suppression of any
transition around Ty by “defects” [49]. Finally, despite the
Kob-Andersen mixture being a good glassformer, at low
temperatures 7' < 0.40, it is prone to crystallization, with a
microphase separation that promotes the formation of a fcc
crystal of large particles coexisting with the fluid [63]. In our
calculations, this is anticorrelated with the growth of the LFS
population, so it identifies a different regime; however, the
mechanisms that lead to crystallization may play a role in the
metastability of the LFS-rich phase.

Applying the method we have developed to other model
glassformers with different fragilities and different struc-
tural signatures [27], and comparing it with existing
theories for critical behavior in glasses [55,64] will be
the challenging subjects of future investigations. Particle-
resolved experiments with colloids and granular materials
[65] provide the natural means by which our predictions
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may be verified experimentally, as these experiments
provide the same data as the simulations we have used
here. Progress has been made in this direction, with
identification of the dynamical phase transition in trajectory
space to a LFS-rich phase [15]. It is thus possible to directly
investigate the phenomena we have identified here.

More generally, provided a LES can be identified with a
given system, we expect it to be possible to observe the kind
of behavior we see here. In particular, we expect that other
Lennard-Jones and hard sphere systems should exhibit
similar behavior, as LFS are known for these systems
[66]. In metallic glasses, LFS have also been found
[67-69]. Other glassformers in which local structure has
been investigated include oxides and other inorganic mate-
rials [70]. A challenging direction of research would be to
apply trajectory sampling to simple models of silica (such as
the so-called BKS model [71] or the NTW model [72]),
where a crossover from fragile to strong behavior is
observed [73], in order to identify its relationship with
the dynamical phase transition discussed in the present
work. Beyond that, it is important to observe that organic
molecules, and even polymers at the present time, form an
open challenge as LFS have yet to be identified. For some
coarse-grained models (such as the Lewis-Wahnstrom
model for ortho-terphenyl [74]), it would be possible to
identify local structure and its relation to the dynamics
following an analysis similar to the present work. However,
the greatly increased number of degrees of freedom of
molecular systems means that convincingly determining a
LFS still constitutes a considerable task, and other forms of
amorphous order may prove more amenable to identify the
kind of phenomena we present here [24,75-77]. We stress,
though, that we expect the behavior we see to be generic to a
wide range of materials.
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APPENDIX A: GHOST-PARTICLE
MONTE CARLO TECHNIQUE

We compare the inherent state energies obtained from
trajectory sampling to equilibrium values obtained via a
modified Monte Carlo technique inspired by the ghost-
particle insertion method [37] and the employment of swap

Monte Carlo techniques in order to equilibrate supercooled
liquids closer to the glass transition.

The Kob-Andersen binary mixture is characterized by
high density and relatively hard interactions which make
traditional particle-swap techniques highly inefficient.
Particle swaps appear to be much more effective for ternary
mixtures [32], soft interactions [36], or very polydisperse
hard spheres [33].

Here, we choose to improve the sampling efficiency in
the Kob-Andersen mixture by introducing a third species
in our system. At any time step, the system is split into
N — 1 particles interacting via the standard nonadditive
Kob-Andersen interactions (see Sec. II A) and a so-called
“ghost” particle g. This can be both a large particle A or a
small particle B, and it interacts with any other particle 7 via
a capped potential:

V;.i = min(V}/g,y,»(rgi)v sznax)’ (Al)

where y, and y; correspond to the A or B types of particles g
and 7, while s is a discrete variable associated with the state
of particle g. We define a discrete space of Nges states
corresponding to different values of the maximum allowed
energy V.. During the simulation, we perform a Markov
chain in the space of states, with transitions between
state s and s’ = s & 1 governed by a Metropolis acceptance
probability:

: 1N
Pacc = min {LeXP <_T,Z_; Vf/,i - Vf],i) } (Az)

We then implement the following algorithm:

(1) We perform N attempts of local Monte Carlo moves
following the usual Metropolis prescription.

(2) We perform a Monte Carlo step according to
Eq. (A2) and modify the discrete state variable s
and the corresponding potential cap V3, associated
with the ghost particle g.

(3) When the discrete variable s assumes the value
N gages» the ghost particle becomes a normal particle.
We therefore store the corresponding configuration,
and the ghost status s = 0 is assigned to a new,
randomly selected particle.

(4) We repeat steps 1-3 in order to obtain equilibrated
configurations, whose inherent state energies are
evaluated using the FIRE algorithm (see Sec. II A
above), while trajectory sampled configurations ap-
pear to sample energies that are significantly lower.

Our choice for the discrete set of states is the following:

S 0 1 2 3 4
anax/eAA 3 4 5 12 —+00

The idea behind the algorithm is to facilitate the particle
motion by lowering the energy barriers for cage breaks
locally while preserving detailed balance. As shown in
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Fig. 2, the technique produces reliable estimates of the
inherent state energies down to 7 = 0.40. At T = 0.375,
the system still appears to be trapped in a glassy state,
within the considered computation time (256 CPU hours,
4 x 10" Monte Carlo sweeps), and trajectory sampling
provides significantly lower inherent state energies.

APPENDIX B: NONEQUILIBRIUM RELAXATION
FROM LFS-RICH CONFIGURATIONS

In order to provide an estimate for the coexisting LFS-
poor and LFS-rich populations at temperatures lower than
the lowest sampling temperature 7, = 0.48 employed in
the trajectory sampling technique, we perform conventional
molecular dynamics simulations starting from a selected
sample of initial configurations.

We first determine the expected average inherent state
energy for the LFS-rich phase ¢, (7)) at temperature 7 via
reweighting: See Sec. II D and Fig. 2. From our population
of sampled trajectories, we then extract a number L = 70 of
central configurations of N = 216 particles whose energy
is within the interval [p, — 6, Prich + 0], where 6 = 0.006
is chosen as the typical width at half-height of the LFS-
rich peak in the reweighted probability distribution
p(p, = px) [see inset of Fig. 3(c)]. We measure the
relaxation from the LFS-rich phase to the LFS phase with a
constant temperature protocol, where the system is coupled
to a Nose-Hoover thermostat at temperature 77 whose
characteristic damping time is set to a tenth of the structural
relaxation time.

Following this protocol, we produce trajectories of
duration 4z, temperatures 7 = 0.44,0.42, 0.40 and measure
the population of LFS n along the trajectories. For every
trajectory, we model the time evolution of the LFS pop-
ulation as a two-state function n(¢) =A-+Btanh (1—7yciging ) /
C and fit the model to the data to obtain per-trajectory
estimates of the time 7,,.in, Needed to melt the LFS-rich
state. For every trajectory, we then estimate the LFS-rich
coexisting population with the time average of the LFS
population in the interval [0, Zpejing |, and also the LFS-poor
population from the remaining part of the nonequilibrium
trajectory.

Averaging over all the initial conditions, we obtain mean
and standard errors as represented in Fig. 4(b) by pink
(NVT protocol) symbols. The estimates for the LFS-poor
phase (despite not resulting from equilibrium runs) are, at
most, 3% higher than the prediction for the equilibrium
liquid, Eq. (2).
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