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Using computer simulations, we study the dynamic arrest in a schematic model of colloid-polymer
mixtures combining short-ranged attractions with long-ranged repulsions. The arrested gel is a dilute
rigid network of colloidal particles bonded due to the strong attractions. Without repulsions, the gel
forms at the spinodal through arrested phase separation. In the ergodic suspension at sufficiently high
densities, colloidal clusters form temporary networks that percolate space. Recently [M. Kohl et al.,
Nat. Commun. 7, 11817 (2016)], it has been proposed that the transition of these networks to directed
percolation (DP) coincides with the onset of the dynamic arrest, thus linking structure to dynamics.
Here, we evaluate for various screening lengths the underlying gas-liquid binodal and the percolation
transitions. We find that DP shifts the continuous percolation line to larger densities, but even beyond
this line the suspension remains ergodic. Only when approaching the spinodal does dynamic arrest
occur. Competing repulsions thus do not modify the qualitative scenario for non-equilibrium gelation,
although the structure of the emerging percolating network shows some differences. Published by AIP
Publishing. https://doi.org/10.1063/1.5037680

After preparation, many soft materials do not reach
their thermodynamically stable state but are dynamically
arrested.1–9 One example is low-density colloidal suspen-
sions with short-range attractive forces, which form a gel,
a non-equilibrium network structure of bonded particles.10

For colloid-polymer mixtures in which the polymers induce
entropic depletion forces between the colloidal particles, there
is now ample evidence that percolation11 is necessary but not
sufficient and that gelation is related to liquid-gas phase sep-
aration that is arrested.4,12–15 This arrest is caused mainly
by the large cost of breaking bonds and the high density
of the colloidal liquid phase, although hydrodynamics also
play a role.16,17 This scenario is supported by experiments
directly imaging and tracking the colloidal particles through
confocal microscopy4,5,18 and corroborated by simulations
of systems with short-ranged attractions.4,18–20 These sys-
tems are characterized by a metastable critical point termi-
nating gas-liquid coexistence within the gas-solid two-phase
region.21

For suspensions of nanocolloids with thermosensitive
molecular brushes, an alternative scenario has been proposed
in which the gelation line is located before the phase sep-
aration and at higher densities is linked to the location of
the attractive glass.6,22 In a numerical study23 of the adhe-
sive hard-sphere model,24 this gelation line has been related
to the mean-field rigidity transition.25 For colloidal particles
with additional electrostatic repulsions, the onset of directed
percolation (DP) has been proposed as a structural transition
taking place concurrently with gelation.26 In contrast to con-
tinuous percolation, in the case of DP, only forward paths

along an arbitrary direction are considered.27 Moreover, in
computer simulations of sticky spheres, it has been demon-
strated that adding a screened electrostatic potential shifts
the percolation line.28 Hence, while for short-ranged attrac-
tions the specific shape of the pair potential is known to
be irrelevant, adding a competing long-range repulsive term
might play a role in determining the location and micro-
scopic mechanism of gelation. In this communication, we
study such a model potential. However, one should bear in
mind that for the important class of experiments which use con-
focal microscopy to study colloidal systems in 3d real space
(so-called particle-resolved studies), simple addition of spher-
ically symmetric attractions and repulsions does not seem to
hold.29

We study a system composed of N particles, the diameters
σi of which are drawn from a Gaussian distribution with mean
σ corresponding to a polydispersity of 5%. Our pair potential
reads u(r) = uSW(r) + uYK(r), where the first contribution is
the square well (SW) potential

uSW(r) =




∞ if r ≤ σij,

−ε if σij < r < σij + δ,

0 if r ≥ σij + δ

(1)

with σij = (σi + σj)/2 modeling a hard-core repulsion plus a
short-range attraction. This part of the potential is fixed by two
parameters: the attraction range δ and the attraction strength ε .
To be consistent with our previous experimental and numerical
study,20 we set δ = 0.03σ. To model screened electrostatic
interactions, we employ the Yukawa potential
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FIG. 1. Model and methods. (a) Pair potential for ε = 3.2
and various values for κ. (b) Simulation snapshot in the
slab geometry used to compute coexisting densities. (c)
Probability PDP that a particle participates in a directed
path as a function of the attraction strength ε , κ → ∞,
and φ = 0.4 for two system sizes: N = 1000 (filled red
symbols) and N = 10 000 (empty blue symbols). The solid
line is a fit to PDP ∝ (ε − εDP)βDP (cf. main text). The
dashed line indicates the criteria PDP > 0.2 for points
included in the fit.

uYK(r) = C

(
2

2 + κσij

)2 (σij

r

)
exp[−κ(r − σij)], (2)

with screening length κ−1 controlled in experiments by the salt
concentration. The prefactor is set to C = 200kBT in agreement
with Ref. 26. In Fig. 1(a), we plot the total pair potential u(r)
for several values of κ at ε = 3.2kBT, which is very close to

the critical attraction strength of the SW fluid.20 For κ → ∞,
we recover the SW fluid. In the opposite limit κ → 0 of
unscreened charges, the system will form a Wigner crystal due
to the (effective) large packing fraction30 (cf. Fig. 3). Although
more stylized, we shall see in Fig. 2(c) that this potential repro-
duces the same phase behavior as the model studied in Ref. 26.
To summarize, the model is characterized by three control

FIG. 2. Statics and dynamics. (a) Phase diagram of the
SW fluid (κ→∞) in the plane (φ, ε ). The black line shows
the binodal with symbols showing measured coexisting
densities and the black star indicating the critical point.
Also shown are the threshold attractions εP for contin-
uous percolation (P, blue triangles) and εDP for directed
percolation (DP, red discs) to occur. The mean-field rigid-
ity transition 〈n〉 = 2.4 (empty green symbols) coincides
with DP. The dashed red line is a guide to the eye and
crosses the binodal at φ ' 0.2. (b) Decreasing κ shifts the
binodal to larger ε . The different colors from black (bot-
tom) to green (top) correspond to κ =∞, 32, 16, 10. [(c)
and (d)] Phase diagram in the plane (−ε , κ) for two differ-
ent packing fractions (c)φ = 0.2 and (d)φ = 0.4. The color
map indicates the average number of bonds 〈n〉. Directed
percolation is absent at green symbols (PDP < 0.2)
and present at red symbols (PDP > 0.2). The black empty
circles indicate the position of the binodal from the inter-
section in (b) of dashed lines and binodals (crosses).
The black lines are guides to the eye. [(e) and (f)] Self-
intermediate scattering function (ISF) F(k, t) for κ = 16
varying ε uniformly from 1 to 10kBT at two different
packing fractions: (e) φ = 0.2 and (f) φ = 0.4. Color
code: green if PDP < 0.2, red if PDP ≥ 0.2, and black if
the system has crossed the binodal.
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parameters: the global packing fraction (colloid concentra-
tion), the attraction strength ε (related to polymer concen-
tration), and the inverse screening length κ (related to salt
concentration).

We perform Monte Carlo simulations of N particles
(mostly N = 1000) at fixed volume V and temperature T. We
employ only local moves with uniform displacements in the
range [−δl, δl] in each direction. We keep the acceptance prob-
ability for the local moves close to one half through adapting
δl. The density is measured through the mean packing fraction
φ = πσ3N /(6V ). We cut off the potential at rc = 4/κ and we shift
the Yukawa contribution by uYK(rc) to enforce zero energy at
the cutoff. In the following, we employ dimensionless lengths
in units of σ and energies in units of kBT.

We perform two different types of simulations. We first
study the equilibrium coexistence between a dilute gas and
the dense liquid in a slab geometry with box lengths Lx = Ly

= Lz/2; see Fig. 1(b). We first prepare a random hard-sphere
configuration without overlaps in a cubic box two times
smaller than the final volume at density φ = 2 × φc, with
φc = 0.275 being the critical packing fraction of the SW
model at δ = 0.03.20,31 We then let the system equilibrate for
3 × 107 Monte Carlo sweeps and compute the density pro-
file φ(z) along the z-axis for another 107 sweeps. We fit the
measured density profile to the mean-field expression

φ(z) =
φl − φg

2
+
φl − φg

2
tanh

( z − z0

2w

)
. (3)

Here, φg and φl are the coexisting densities of the gas and
liquid phase, respectively, and the interface position and width
are z0 and w. We perform four independent runs to calculate
averaged density profiles.

Simulations of the second type are performed in a
cubic box of edge length L, which all start from a disor-
dered initial configuration without overlaps. Here, we employ
Kinetic Monte Carlo (KMC) simulations using the procedure
described in Ref. 32. Displacements in each direction are in the
range [−δl, δl] with δl = 0.015σ. We map the KMC dynamics
onto Brownian dynamics (with time step ∆t, Brownian time
τB = σ2/D0, and D0 the bare diffusion coefficient) through
∆t/τB = paδl2/(6σ2) monitoring the acceptance probability
pa. We equilibrate the system for 2 × 106 sweeps and per-
form an analysis for an additional 3 × 106 sweeps. For ergodic
suspensions, the typical relaxation time is of the order of 104

Monte Carlo sweeps and corresponds to less than 0.1τB after
rescaling, which is consistent with Ref. 33 for hard-sphere
suspensions below the freezing point. We construct a network
of mutually bonded particles, whereby a bond between par-
ticles i and j is formed if their distance obeys rij < σij + δ
(i.e., they are within the range of the attractive well of the
SW potential). We then compute three different quantities:
the average number 〈n〉 of bonds formed with other particles
and the probabilities PP and PDP that a particle participates
in a continuous and directed percolating path, respectively.
For the latter, we follow closely the procedure described in
Ref. 26: We fix an arbitrary direction d and define a new
bond network, where two particles i and j are now bonded
if, additionally to our previous criteria, d·rij > 0 is obeyed. We
then find for each particle whether it participates in a directed

path of projected length lDP ≥ L. We calculate the probabil-
ity PDP by averaging over all particles and configurations.
One can extract the threshold εDP at which directed perco-
lation sets in through fitting PDP(ε) with the functional form
PDP ∝ (ε−εDP)βDP with critical exponent βDP = 0.58.27 In prac-
tice, to circumvent the smoothening of the transition caused
by finite size effects, we only fit data points with PDP > 0.2
(cf. Ref. 26). In Fig. 1(c), we show such a procedure for
κ →∞ and φ = 0.4.

In Fig. 2(a), we plot the metastable gas-liquid binodal
formed by the coexisting densities φg,l extracted from the
Monte Carlo simulations for the SW model (κ→∞) with the
critical point at εc ' 3.2 and φc ' 0.275.31 Recently,20 we have
confirmed experimentally and numerically (through a mapping
onto the SW model) that gelation occurs along the spinodal,
which for short-ranged attractive systems is often very close to
the binodal.18 We observe gelation for a wide range of densi-
ties 0.1 < φ < 0.4 with the lower density limit set by the onset
of a percolating network of bonded particles [cf. Fig. 2(a)].
One should note that, while the SW model reproduces the
onset of gelation, it does not show a true dynamic arrest but
a crossover to a regime with slow (aging) dynamics. The line
εDP(φ) where directed percolation sets in has the same shape
as for continuous percolation but is shifted to larger packing
fractions. We find that the mean-field rigidity transition deter-
mined as the average number of bonds 〈n〉 = 2.4 agrees with
the onset of directed percolation. As the global packing frac-
tion increases, the DP threshold εDP decreases and goes to zero
in the liquid-solid coexistence region of the hard-sphere fluid
(ε = 0). In the opposite limit, in the low density region, we
find that the DP transition and the binodal intersect around
φ'0.2. Hence, on one hand for packing fractions 0.1< φ< 0.2,
we have the formation of a gel without a structural signature.
On the other hand, for φ > 0.2, we find that state points below
the binodal but with ε > εDP remain fully ergodic, i.e., form a
percolating fluid. Only state points quenched through the bin-
odal show dynamic arrest in agreement with previous work.34

Hence, over a wide region of the phase diagram, directed per-
colation is not associated with a pronounced change in the
dynamics.

The central result of this communication is that this picture
remains essentially unchanged as we decrease κ thus increas-
ing the range of the competing repulsions. In Fig. 2(b), we
plot the phase diagram varying the inverse screening length
κ. When increasing the repulsion strength between particles,
one has to quench the system deeper (increasing ε) to observe
the metastable gas-liquid binodal. Note that the form of the
binodal remains rather flat with a high-density liquid phase.
In Figs. 2(c) and 2(d), we show a different cut (−ε , κ) through
parameter space now holding the packing fraction fixed. For
φ = 0.2 shown in Fig. 2(c), we obtain a very similar phase dia-
gram as reported in Ref. 26. Interestingly, we find for all values
of κ that the DP transition coincides exactly with the position
of the binodal. By contrast, when increasing the packing frac-
tion to φ = 0.4 [Fig. 2(d)], we find no correlation between
directed percolation and the location of the phase boundary.
Note that also for finite κ, we observe that directed percola-
tion coincides with the rigidity transition 〈n〉 ' 2.4; hence, as
seen for sticky spheres, the two transitions are intertwined. We
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FIG. 3. Dynamic crossover. Shown is the same plot as in
Figs. 2(c) and 2(d) for (a) φ = 0.2 and (b) φ = 0.4 but now
with the color indicating the structural relaxation time
τ. In (b), for large repulsions, we observe the formation
of a Wigner crystal (see snapshot). (c) The same plot as
Fig. 2(f) but now for a larger system with N = 10 000 at
three different ε indicated by gray squares in (b). Data
for N = 1000 are indistinguishable.

remark that for strong repulsions, the gas-liquid coexistence
might terminate.35 However, for the values of κ ≥ 4 consid-
ered here, we do observe (meta)stable coexistence in our slab
simulations.

To obtain insight into the dynamic behavior, we fix
κ = 16 (which would correspond to fixing the salt con-
centration) and progressively increase the attraction strength
(increasing the polymer concentration). We record the self-
intermediate scattering function (ISF)

F(k, t) =
1
N

N∑
i=1

exp{ik · [ri(t) − ri(0)]} (4)

at wave vector k = 2π/σ. In Figs. 2(e) and 2(f), we plot the
result for the two packing fractions. We observe a distinct jump
of the shape of the ISF and an increase of the relaxation time
τ (measured as F(k, τ) = 1/e) by about 2 orders of magni-
tude for φ = 0.2 and about one order of magnitude for φ = 0.4
between two successive values for ε exactly when crossing the
binodal. This observation supports the scenario that dynamic
arrest of the network coincides with the onset of phase sep-
aration. Specifically, for φ = 0.4, we show that the system
remains ergodic (the intermediate structure function decays to
zero) when crossing the directed percolation line (although the
relaxation time does increase).

In Fig. 3, we compare the structural relaxation time τ
with both the binodal and the DP transition. For both densi-
ties, down to κ ' 10, we find that the binodal bounds the slow
dynamics (which we identify with τ > 10τB). For the lower
density φ = 0.2, the region between slow dynamics and fast
dynamics (τ < 0.1τB) is narrow and broadens considerably
for φ = 0.4. However, in this region, the fluid remains ergodic
and there is still a narrow band in which the relaxation time

jumps by about one order of magnitude [Figs. 3(c) and 2(f)]. In
contrast to φ = 0.2, state points characterized by directed per-
colation now extend far into the ergodic fluid. This indicates a
highly ramified network in which bonds constantly reorganize,
a percolating fluid.

In this communication, we have reported simulations of a
minimal model for colloid-polymer mixtures with competing
short-range attractions and long-range repulsions. This model
is characterized by three main parameters: the global pack-
ing fraction φ of colloidal particles, the attraction strength ε ,
and the screening length κ−1. We found that the mean-field
rigidity transition and directed percolation occur at the same
location for various packing fractions, attraction strengths,
and also screening lengths. Monitoring the dynamics through
the self-intermediate scattering function, we have demon-
strated that gelation in this model system is still controlled
by phase separation and that this mechanism is unchanged
at least down to κ = 10. Experiments and simulations in
Ref. 26 have been performed at packing fraction φ ' 0.2.
We find that exactly at this packing fraction, the directed
percolation transition line crosses the gas-liquid binodal, lead-
ing in its vicinity to the coincidence of directed percolation
and dynamic arrest. At least for the model studied here,
however, no general link between the structural transition to
a directed percolation network and dynamic arrest can be
drawn.
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