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1. Introduction

Measuring entropy changes in a liquid is challenging. In 
molecular liquids, one conventionally proceeds indirectly 
through calorimetric measurement of specific heat curves. 
This provides an estimate for bulk entropy changes but yields 
little information on the structural transformations taking 
place [1]. The entropy difference between the liquid and the 
crystalline states of a system, ∆Slc = Sliq − Scrys, is at the core 
of the thermodynamic understanding of the glass transition. 
When cooling a liquid to its experimental or laboratory glass 
transition, the difference ∆Slc becomes approximately con-
stant as the system’s structural relaxation time τα exceeds the 
available observation time [2, 3].

Even more challenging is to disentangle configurational 
contributions to the entropy (which account for the number 
of disordered inherent states accessible to the liquid) from 
the vibrational ones. On approaching the experimental glass 
transition temperature, ∆Slc is dominated by the difference 
in configurational entropy, as quantitatively demonstrated in 
several computer simulations [4–7]. In the thermodynamic 
interpretation of the glass transition of Adam-Gibbs (inher-
ited by the random first order transition (RFOT) framework 
[8]), the entropy change ∆Slc vanishes at a finite temper ature, 
TK, with diverging structural relaxation times. However, such 
a scenario is experimentally inaccessible due to an unavoid-
able glass transition, which leads the supercooled liquid 
off-equilibrium into an ageing glassy state. Hence, within 
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Abstract
A quasi two-dimensional colloidal suspension is studied under the influence of immobilisation 
(pinning) of a random fraction of its particles. We introduce a novel experimental method to 
perform random pinning and, with the support of numerical simulation, we find that increasing 
the pinning concentration smoothly arrests the system, with a cross-over from a regime of 
high mobility and high entropy to a regime of low mobility and low entropy. At the local level, 
we study fluctuations in area fraction and concentration of pins and map them to entropic 
structural signatures and local mobility, obtaining a measure for the local entropic fluctuations 
of the experimental system.
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the RFOT framework, the introduction of an additional 
parameter to control entropy reduction has been proposed 
[9]. Numerical studies [10–14] of supercooled liquids with 
a finite fraction, c, of immobile pinned particles have shown 
that it is possible to reduce the bulk configurational entropy 
of the liquid at moderately low temperatures and to reveal—
in three spatial dimensions—a first-order transition with 
near-critical fluctuations in the degree of similarity or overlap 
between different configurations, the central order parameter 
of the RFOT framework. In two dimensions, this transition 
is expected to mutate into a cross-over [12] between a free 
regime at low concentrations of pinned particles and a frus-
trated, immobilised regime at high concentrations. However, 
while the introduction of a fraction of pinned particles as 
a control parameter is trivial in computer simulations, it is 
much more difficult to realise in experiments.

Colloidal experiments are in this sense most promising: 
individual particles can be observed and their trajectories 
tracked in time, allowing direct comparison with molecular 
simulations. Recent colloidal experiments have shown it is 
possible to emulate the effect of pinned particles using holo-
graphic optical tweezers to apply a local confining potential 
to individual particles [15–17]. This technique is very pow-
erful as it allows precise control of pinned particle locations 
and their spatial distribution. However, it presents some 
drawbacks, key amongst them being limited to only tens of 
simultaneously immobilised particles, hindering the statis-
tics. Further complications arise due to interference between 
multiple optical traps resulting in spatial intensity variations 
and weak, unwanted ‘ghost traps’, creating uncertainty in the 
optical energy landscape applied to the system [18, 19].

Here we introduce an alternative approach. We investi-
gate the effect of pinning in a quasi-two dimensional binary 
mixture of hard colloidal particles sedimented against a glass 
substrate [20, 21]. Immobilisation occurs at random due to 
particles overcoming the repulsive electrostatic barrier at the 
substrate and entering an attractive van der Waals minimum 
resulting in their adsorption and pinning to the glass surface, 
see figure 1(c). Consequently, one observes a progressive, irre-
versible increase in the concentration of pinned particles. The 
spatial distribution of pinning sites is not externally controlled 
and is, in this sense, random. Through optical microscopy, 
we obtain particle trajectories and measure the effect of pro-
gressive immobilisation on the local structure. Experimental 
studies are augmented with numerical simulations, mapping 
local area fraction and pinned particle fluctuations to a local 
order parameter derived from the bulk configurational entropy 
and measuring local fluctuations in the two-body excess 
entropy. While, at the bulk level, configurational entropy 
reduction and increasing relaxation times evolve similarly 
with increasing pinned fraction, at the local level, low entropy 
regions appear to freeze-in local area fraction and pinned-
particle fluctuations without strong correlations with the local 
mobility.

The article is organised as follows: section 2 describes the 
experimental approach. Section 3 reports the numerical model 
of the system, with further details on the entropy calculations 
in the appendix. In section 4 we discuss the equilibrium phase 
diagram of the system, as obtained from simulations, and relate 
it to the experimental observations. In section 5 we describe 
the effect of a slowly increasing fraction of pinned particles 
on the mobility and fluctuations in the local two-body excess 

Figure 1. Experimental system: (a) and (b) are micrographs showing the experimental system at overall area fractions η = 0.65 and 
η = 0.88 respectively. (c) Schematic representation of the experimental setup. Binary colloidal silica particles of two characteristic sizes 
σsmall = 3 µm,σlarge = 5 µm  form a quasi-2d layer adjacent to a glass coverslip. They occasionally overcome the repulsive electrostatic 
barrier with the glass substrate and are immobilised due to van der Waals attraction (red particles).
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entropy. Finally we conclude and summarise our findings and 
discuss their implications for future work.

2. Experimental methods

2.1. Protocol

Optical microscopy is performed using a Leica SP5 micro-
scope in brightfield mode. The experimental system is a 
50:50 number ratio mixture of 5.0 µm and 3.0 µm diameter 
silica spheres suspended in deionised water. We consider a 
binary mixture in order to minimise the emergence of hexatic/
hexagonal order and choose the corresponding size ratios in 
order to limit fractionation of the two species. This allows 
us to study disordered systems even at very large area frac-
tions. Due to the density mismatch with the solvent, particles 
sediment to form a monolayer adjacent to a glass coverslip 
[21, 22]. The gravitational lengths of 5 µm  and 3 µm  silica 
spheres in water are 3.9 nm and 18 nm  respectively, and so 
the system can be considered quasi-two-dimensional. After 
sedimentation, area fractions in the range 0.6 < η < 0.88 
are obtained as shown in the micrographs in figures 1(a) and 
(b). The suspension is stabilised against aggregation by an 
electrostatic interparticle repulsion, however, this is suffi-
ciently short-ranged that the addition of salt has a negligible 
effect on the interparticle potential [23], and so we treat our 
sample as binary quasi-hard-discs. The monodisperse hard 
disc system exhibits a first order transition from an isotropic 
liquid to a hexatic structure at η = 0.7 and a subsequent 
continuous transition to the hexagonal crystal at η = 0.72 
[24]. However, long-range and quasi-long-range orienta-
tional and translational ordering is inhibited in our binary 
system, maintaining a liquid-like structure up to the highest 
area fractions considered. Experiments are performed on a 
precisely levelled optical table  to prevent systematic lateral 
drift due to sedimentation parallel to the imaging plane. We 
note that, following sedimentation, the equatorial planes 
of large and small particles are at different heights and so 
the true interparticle interactions are non-additive [25]. The 

distance of closest approach between a large and small par-
ticle is given by 

√
σlarge + σsmall, which for our system is 

reduced by 3.2% compared to the in-plane approach distance 
(σsmall + σlarge)/2. Thus, non-additivity is a small effect and 
is neglected in the following modelling and discussion.

Over time, particles can overcome the electrostatic repul-
sion from the substrate and van der Waals attractions cause 
irreversible adsorption. Thus, the fraction of immobilised 
particles increases with time. Typically, this is suppressed by 
treating the glass surface with e.g. a silane. Here, however, 
we exploit this effect to obtain a quasi-static subpopulation 
of pinned particles. This is illustrated in figure 1(c). A range 
of pinning densities is obtained by varying the waiting period 
between sample preparation and observation. Longer waiting 
times yield greater concentrations of pinned particles. The rate 
of pinning on untreated glass coverslips is sufficiently fast that 
the pinned density cannot be considered quasi-static over the 
timescales of image acquisition. Therefore, we slow the rate of 
pinning by treating the substrate with low concentration solu-
tions of Gelest Glassclad 18. With suitable treatment, we find 
that pinning density is approximately constant over periods of 
1 hour, but not entirely suppressed, growing over a timescale 
of days. This allows us to tune the growth rate of the pinning 
concentration and obtain both quasi-stationary growth curves 
(representative of equilibrium) and nonstationary curves, in 
full nonequilibrium conditions, see figure 2(a).

2.2. Identifying pinned particles

Particle trajectories are obtained using routines based on 
those of Crocker and Grier, implemented in the R program-
ming language [21, 26]. Large and small particles are distin-
guished based on the integrated brightness of their images. 
Subsequently, trajectories are used to identify the pinned 
subpopulation. When a particle attaches to the substrate it 
stops moving. Thus, identifying a particle as pinned requires 
an inherently dynamic criterion. Since there is unavoidable 
error in locating the centre of a particle image due to pixel 
noise, even pinned particles show some small but nonzero 

Figure 2. (a) Time evolution of the detected fraction of pinned particles in different experiments. Depending on the glass surface 
treatment the pinning concentration can be held stationary or can increase dramatically over the duration of an experiment. (b) Histogram 
showing standard deviation in particle positions over time interval ∆t = 60 s in an experiment at area fraction η = 0.71. Two populations 
corresponding to pinned (small standard deviation, shaded region) and unpinned particles (large standard deviation) are observed, and thus 
pinned particles are identified.

J. Phys.: Condens. Matter 30 (2018) 094003



I Williams et al

4

displacement between frames. Thus, in order to identify 
pinned particles, each trajectory in a given experiment is split 
into subtrajectories of length ∆t . Within each subtrajectory 
the standard deviation in particle position is calculated. The 
histogram of these standard deviations for all particles in a 
given experiment reveals two peaks, as shown in figure 2(b)—
pinned particles have a much smaller standard deviation in 
position than their unpinned counterparts. A cut-off is applied 
at 0.027σsmall and all particles exhibiting a standard deviation 
smaller than this value are considered pinned particles. The 
value of ∆t  is chosen independently for each experiment, as 
at higher area fractions, particles motion is increasingly hin-
dered by a particle’s neighbours. In practise, ∆t  is chosen so 
that a clear distinction between the peaks corresponding to 
pinned and unpinned particles is evident in the histogram. For 
the lowest density experiments ∆t = 60 s while at the highest 
densities, ∆t = 1000 s.

2.3. Advantages and disadvantages of the adsorption 
 pinning technique

Our experimental methodology allows us to obtain two-
dimensional disordered packings of spheres, with mod-
erate (below c  =  0.10 ) to large (beyond c  =  0.10 and up to 
c  =  0.90) fractions of pins. When working in the moderate 
pinning regime, it is relatively easy to maintain a stationary 
pinning concentration (see figure  2(a)). In this regime, the 
obtained pinned particles are distributed approximately uni-
formly on the plane. We show this through the analysis of pair 
correlation functions, figure 3. We compute the instantaneous 
pair distribution function

gx(r) =
1
ρx

∑
i�=j

δ(|�ri −�rj| − r) (1)

where ρx is the density of particles in the set x and 
i,j are indices running over all the considered parti-
cles. We focus on the total radial distribution functions 
g(r) := gx|x:{all the particles} and the pinned radial distribution 
function gpins(r) := gx|x:{only the pinned particles}. For the former 
we can perform a time average while for the latter this is 
evidently not possible, as pinned particles are by definition 
arrested. In figure 3(a) we see how the two pair distribution 
functions compare at a given value of area fraction and con-
centration of pins.

Hence, to average the fluctuations, we observe that at suffi-
ciently high area fractions the pair correlation functions varies 
slowly and we can average the ratio gpins(r)/g(r) in an interval 
of area fractions and concentration of pinned particles. In 
figure 3(b) we plot these averages and notice that the radial 
distribution of pinned particles follows closely the behaviour 
of the total pair distribution function. Thus, in this regime, 
we can consider the pinned subpopulation to be random, with 
structural features that are indistinguishable from the overall 
particle population.

Furthermore, if pinning is truly random, one expects 
the large-small ratio within the pinned subpopula-
tion to reflect that of the sample as a whole, implying 

Npinned
small /Nsmall = Npinned

large /Nlarge. We compute the ratio 
Npinned

x /cNx = cx/c for x : {large, small}, where Nx is the 
number of particles of type x and cx indicates the fraction of 
particles of type x that is pinned. We scale this by c, the average 
total fraction of pinned particles. A value close to unity corre-
sponds to uniform pinning. As shown in figure 3(c), stationary 
conditions display a statistically relevant prevalence of pinned 
large particles compared to small particles. When the pinning 
is nonstationary, however, small and large particles are more 
evenly pinned. We interpret this effect as a consequence of the 
fact that larger particles sediment faster than smaller particles 
and they are more prone to be adsorbed due to their shorter 
gravitational length.

Our protocol allows the easy preparation and observation 
of large, two-dimensional disordered systems with a finite 
fraction of immobilised particles. However, it also presents 
some important drawbacks. The method as described here 
is limited to two-dimensional systems. Numerical studies  
[10–14] predict that the three dimensional first order pin-
ning glass transition is reduced to a weak crossover in two 
dimensions, meaning our technique is limited in its ability to 
probe theor etical predictions. Secondly, while the extent of 
glass surface treatment facilitates some control over the rate 
of particle pinning, this control is limited, and targeting a spe-
cific rate a priori remains an experimental challenge. Finally, 
dense, supercooled suspensions are by their nature very slow, 
and so equilibration on the experimental timescale becomes 
impossible at high density. Keeping experiments short enough 
that the pin fraction is quasi-static but allowing the unpinned 
particles sufficient time to explore their free energy landscape 
and relax is a significant challenge at high densities.

Figure 3. Pair correlation functions for the pinned particles 
gpins(r) and for all of the particles g(r): (a) at η = 0.711 and 
c  =  0.05; (b) averaging over an ensemble of configurations with 
0.65 < η < 0.738 and 0.03  <  c  <  0.08. (c) Box-plot of the ratios 
of the fraction cx of pinned particles of type x and the overall 
fraction c for large and small particles in stationary (white) and 
nonstationary experiments (shaded).
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3. Numerical simulations

3.1. Molecular dynamics simulations

We model the interactions between hard spherical colloids 
using the pseudo hard sphere potential, a piecewise con-
tinuous truncated and shifted variant of the Mie potential  
[27, 28]:

βV(r) =
{

m
(m

n

)n
βε

[(σij

r

)m −
(σij

r

)n]
+ βε, r < m

n σij

0, otherwise
 (2)
with σij = (σi + σj)/2 between particles i, j, with diameters 
σlarge/σsmall = 5/3 and βε = ε/kBT = 2/3 with kB set to 
unity and exponents m  =  50, n  =  49, for which the system 
behaves as a bidisperse mixture of hard spheres in three 
dimensions and hard disks in two dimensions. We model an 
equimolar mixture with Nlarge = Nsmall with total particle 
number N = Nlarge + Nsmall, ranging from 6 · 103 to 6 · 104 . 

The area fraction is defined as η = πρ(σ2
large + σ2

small)/8, with 

number density ρ = N/L2, where L is the lateral size of a two- 
dimensional square simulation box. Periodic boundary condi-
tions are employed throughout in order to simulate bulk behav-
iour. Our model neglects hydrodynamic interactions, which, 
although important in the formation of colloidal bonds in other 
physical processes such as gelation, nucleation and yielding 
[29, 30], play no role in the dense, hard system considered here.

This model is convenient as it allows us to run molecular 
dynamics simulations in the isochoric-isothermal ensemble 
(NVT), applying a velocity-Verlet integrator of timestep 

dt = 0.0015
√

σ2
small/εmsmall  coupled to a Nosé–Hoover ther-

mostat of damping time tdamp = 0.1
√

σ2
small/εmsmall  using 

the LAMMPS molecular dynamics package [31]. Molecular 
dynamics allows us to easily obtain accurate estimates of the 
pressure from the virial expression, which are useful when 
computing the configurational entropy via thermodynamic 
integration.

Pinned particles are randomly selected on the plane, 
regardless of their size or relative position, mimicking the 
experiment. When a non-zero fraction of pinned particles is 
considered, the thermostat is only applied to the mobile par-
ticles, while velocities and accelerations are zeroed for all the 
pinned particles.

3.2. Entropy calculations and representations

Following previous works [14, 32, 33], we compute the con-
figurational entropy via thermodynamic integration, effec-
tively considering the particles as hard disks. To this end, we 
employ an approach [32] based on the Frenkel–Ladd method 
[34] to obtain the vibrational part of the entropy Svib from 
the mean square displacement with respect to a reference 
configuration. The configurational entropy is calculated by 
subtracting this from the total entropy, Stot, which is obtained 
from the equation of state for the pressure as a function of area 
fraction for several pinning fractions P(η; c). More details can 
be found in the appendix.

From the equilibrium estimates of the configurational 
entropy we define a ‘local entropy’. For every configuration, 
we compute the corresponding radical Voronoi tessellation 
(which takes into account the polydispersity of the system) 
and from the tessellation we define the local area fraction as

ηloc
i =

ai +
∑Ni

j∈neighbors aj

vi +
∑Ni

j∈neighbors vj
, (3)

where the sum runs over the Ni Voronoi neigbors of particle 
i, ax represents the area of particle x and vx is the area of its 
Voronoi cell. Similarly we define a local fraction of pinned 
particles cloc

i  from the local fraction of particles (including 
particle i) that are pinned. We then associate a local configura-
tional entropy through interpolation,

sloc
i = sconf(η

loc, cloc). (4)

By this means, we perform a non-linear mapping of the local 
area fraction and local fraction of pins to obtain a 2D represen-
tation of the regions with higher/lower configurational entropy.

An alternative measure of the local entropy is provided by 
the local two-body fluctuations of the radial distribution func-
tion, contributing to the so-called two-body excess entropy, ̃s. 
It has recently been shown [35] that, for monodisperse crystal-
line systems, this provides an interesting local fingerprint of 
emerging order. For our binary mixture we follow [35] and 
define a smooth pair distribution function for every particle i:

gi
αβ(r) =

1
2πr

∑
j

1√
(2πδ2)

e−(r−rij)
2/(2δ2), (5)

between species α,β  with δ = 0.12σsmall, where the sum runs 
over a shell of neighbours within a fixed radius rm = 5σsmall. 
We employ this definition to compute, for every particle, a 
local entropic signature,

si
2(ρ) = −kB

ρ

2

∑
αβ

xαxβ

∫ [
gi
αβ(r) ln gi

αβ − gi
αβ + 1

]
rdr,

 (6)
which we average locally over the Voronoi neighbours of each 
particle to obtain

s̃i =
si

2 +
∑

j∈neighbours s j
2

1 + Ni
,

 (7)
where Ni are the Voronoi neighbours of particle i.

We show in figure  4 that such a measure of local two-
body entropy is positively correlated with the local entropy 
obtained from interpolation, sloc (equation (4)), and negatively 
correlated with the area fraction, with very small p-values 
indicating that the correlation, albeit moderate (Pearson coef-
ficients of 0.29 and -0.30 respectively), is rather robust (the 
error on the slope is below 2%).

Note that even if sloc and ̃s are correlated, they are two radi-
cally different quantities: the former is obtained by mapping 
local fluctuations in area fraction and density of pinned par-
ticles onto the bulk diagram of figure  8, while the latter is 
immediately accessible from the particle coordinates. Most 
importantly, s̃ is completely blind to the presence of pinned 
particles, while sloc explicitly depends on it.

J. Phys.: Condens. Matter 30 (2018) 094003
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4. Equilibrium behaviour

4.1. Phase diagram

The (metastable) equilibrium phase behaviour of the liquid 
is inferred from numerical simulations of N  =  6000 particles, 
with pinned concentrations in the range c ∈ [0, 0.16], in 5 
independent runs. We compute the structural relaxation time 
τα from the self part of the intermediate scattering function 
Fs(|�q|, t) defined as

Fs(q, t)| = 〈ei�q·(�r(t)−�r(t0))〉t0 (8)

where we take q = |�q| = 2π/σlarge and the average is per-
formed on equilibrium (or stationary, in the case of the 
experiments) trajectories. In figure 5 we show the correlation 
functions obtained from stationary experiments at a range 
of area fractions and pin concentrations. For area fractions 
η � 0.8, full relaxation is observed within the experimental 
time window for all pinning concentrations studied (figure 
5(a)). When the area fraction exceeds η = 0.8, however, 
full relaxation does not occur on the experimental timescale 
(figure 5(b)), the sample is not equilibrated and must be con-
sidered a glass, similarly to previous work [15, 36–38].

The relaxation time, τα, is extracted by fit-
ting the intermediate scattering function decay with 
Fs(q, t) = a exp(−(t/τα)b), the Kohlrausch–Williams–Watts 

law with 0 � a � 1 and 0 < b � 1. Figure  6(a) shows τα 
scaled by the low density limit τ0 = limη→0 τα, calculated 
from both experiments and simulations as a function of area 
fraction. For η < 0.8 we find good agreement between experi-
ment and simulation. Relaxation time is found to be more 
strongly dependent on η than pinning concentration, with 
small changes in area fraction within the supercooled regime 
having a much larger effect on τα than small changes in c. 
Simulations (small solid points) do reveal a upwards shift, 
representing slower dynamics, as c is increased from zero. 
However, due to uncertainties in η and c and the difficulty 
in obtaining good experimental statistics, this relationship is 
not so clearly evident in the experimental data. For η > 0.8 
(shaded region) we have no simulations, only glassy exper-
imental data, showing large fluctuations in measured τα, char-
acteristic of a kinetically trapped, out-of-equilibrium sample.

The relationship between area fraction, pin concentra-
tion and structural relaxation time is illustrated in figure 6(b) 
where we interpolate a colormap representing the logarithm 
of the relaxation times obtained from simulations. Open white 
circles represent the locations of the simulations from which 
the interpolated map is constructed, while open white squares 
refer to the experimental conditions. This map reiterates the 
data shown in figure 6(a). As expected, an increase in c cor-
responds to a progressive slowing down of the dynamics for 

Figure 4. Correlations between the local two-body entropy and (a) the local entropy (b) the local area fraction from radical Voronoi 
tessellation at total area fraction η = 0.75 from numerical simulations.

Figure 5. Self part of the intermediate scattering function (ISF) calculated from experiments. (a) For area fractions below η ≈ 0.80 we are 
able to observe full relaxation and differences in lower (red) and higher (blue) pinning concentrations are measurable. (b) For area fractions 
η � 0.80 the accessible time-window is insufficient to observe full relaxation and the system is a glass. Lines are stretched exponential fits 
from which relaxation times are estimated.
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a given area fraction. This is most pronounced for low area 
fractions between 0.5 < η < 0.65 corresponding to very fluid 
samples. From simulations we learn that for, e.g. η ≈ 0.68, 
one needs to immobilise  ∼15% of all particles to observe an 
order of magnitude decrease in τα. The maximum quasi-static 
pinning concentration obtained in experiments in this η regime 
is c ∼ 0.08, for which the simulations show we expect only a 
small slowing of dynamics. Thus, it is perhaps not surprising 
that it is more challenging to resolve pin-induced slowing 
down in our experiments. High area fractions are not sampled 
in equilibrium, so we do not exceed η = 0.78 in equilibrium 
simulations. As mentioned above, experiments are performed 
at higher area fractions, but do not fully relax within the obser-
vation time (figure 5).

From the equilibrium simulations we also obtain the con-
figurational entropy following the thermodynamic integration 
method detailed in the appendix as shown in figure 7. This 
method requires calculating the vibrational entropy through 
the application of additional harmonic potentials which is 
unfeasible in experiments under the current protocol, and so 
we limit ourselves to employing these numerical results to 
guide our analysis and interpretation of the experiments. As 
with relaxation time, the numerical results display a transition 

to lower entropy that is smooth and continuous as the con-
centration of pins increases. However, as in the case of the 
relaxation times, small variations in the area fraction typically 
produce larger effects than comparable variations in the pin-
ning concentration. This is particularly evident in the color 
map shown in figure 8.

We notice that the progressive arrest of the system due to 
pinning corresponds to both an increase of the structural relax-
ation time and the reduction of entropy for the bulk system. 
While the effect of pinning on the structural relaxation time 
(and hence the mobility) is obvious, its effect on configura-
tional entropy is non-trivial. A conventional picture relates the 
pinning process to a progressive simplification of the configu-
rational space, with entire families of configurations becoming 
excluded from the possible ensemble of configurations that the 
system can assume. In this sense, as pinning progresses, the 
number of alternative configurations decreases and so does 
the entropy. However, it is not clear whether such a process 
is accompanied by structural changes at the local level. In the 
following we show that, within the limits of our approach, no 
significant restructuring occurs when pinning progresses.

Figure 6. (a) Relaxation times measured in simulation (coloured dots) and experiment (empty symbols) as a function of the total area 
fraction η. The shaded area indicates the region where full relaxation cannot be observed in the available observation time, and where the 
reported relaxation times are estimated from ageing samples. The continuous and dashed lines are log τ/τ∞ = D/(η − η0) fits to the c  =  0 
and c  =  0.16 simulation datasets. (b) Dynamical phase diagram at high area fractions: the experiments (squares) span a wide range of area 
fractions η and pinning concentration c. Numerical simulations (circles) provide equilibrium measurements of the relaxation times. We fill 
the represented phase diagram through numerical interpolation, and a logarithmic colormap for log10(τα/τ0).

Figure 7. Configurational entropy as a function of area fraction, η, 
for different pinning concentrations, c, as obtained from the method 
described in the appendix for equilibrium molecular dynamics 
simulations. Lines are polynomial fits to guide the eye. Throghout, 
the Boltzmann constant is set to kB = 1.

Figure 8. Colour plot of the configurational entropy sconf(η, c) as 
obtained from numerical simulations. Circles indicate the points 
evaluated in simulation; the level curves are obtained by quadratic 
interpolation and show that pinning has only a moderate effect on 
the configurational entropy of the system even at relatively high 
concentrations of pins.

J. Phys.: Condens. Matter 30 (2018) 094003



I Williams et al

8

4.2. Local structure and mobility

We characterise the structural features of the system using 
local area fraction, which is easy to measure in both simula-
tions and experiments, and the local entropy sloc, equation (4), 
which is read from the interpolated phase diagram in figure 8 
for any value of the local pinning fraction c and the local area 
fraction.

Figure 9 shows colormaps representing local area fraction, 
ηloc, and entropy, sloc, in a simulation of 60 000 particles at 
η = 0.74 with an intermediate pinning concentration c  =  0.08. 
Spatial correlations between the two quantities are immedi-
ately evident and we highlight a few highly similar regions. 
It appears, therefore, that area fraction fluctuations essentially 

predict the shape of low and high entropy regions, regardless 
of the local fluctuations of the pinning concentration. This was 
anticipated from the bulk phase diagram of figure  8 which 
showed that variations in the area fraction affect the entropy 
more strongly than variations in the pinning fraction.

Such color coding of the particle coordinates can also be 
applied to the experimental datasets, assuming that the phase 
diagram in figure 8 is valid for the experimental conditions. 
In figure 10 we consider an experimental sample at η = 0.715 
with an intermediate value of pinning fraction, c  =  0.08. In 
figures 10(a) and (b) we color-code the tracked particle coor-
dinates according to ηloc and sloc as read from figure 8. We 
again highlight that low entropy regions correspond to high 
area fraction regions, with the caveat that the Voronoi cells 

Figure 9. Maps of local area fraction (left) and configurational entropy (right) for a numerical simulation of total area fraction η = 0.74 
at pinning c  =  0.08. Black dots indicate the positions of pinned particles. White circles highlight regions demonstrating similar spatial 
patterns in both representations.

Figure 10. Experimental configuration at η = 0.715 with pinning concentration c  =  0.08. As in figure 9, we plot the local area fraction 
from the Voronoi tessellation (a) and the interpolated local entropy sloc (b) as mapped through the diagram in figure 8. High area fraction 
regions are typically mapped into low entropy regions. Particles at the borders of the field of view are not physically relevant, as their 
Voronoi surfaces cannot be estimated and hence their area fractions are very low.
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(and the derived local quantities) of particles at the edges of 
the imaged region cannot be reliably computed.

In order to perform a quantitative analysis of spatial corre-
lations of the local area fraction, entropy and mobility fields, 
we restrict ourselves to inner regions, far from the edges. We 
define the mobility as the distance travelled by a particle in a 
time interval ∆t ∼ τα

mi(tx) = |�ri(tx +∆t)−�ri(tx)|. (9)

Through mapping the local area fraction, local entropy 
and mobility onto a fine two-dimensional grid, as in  
figures  11(a)–(c), we obtain images Iη, Is, and Im of local 
area fraction, entropy and mobility respectively. We com-
pute the rescaled two-dimensional Fourier transforms as 
Ĩx = F [(Ix −min Ix)/(max Ix − min Ix)] for x : η, s, m 
where the F  operator represents the discrete Fourier trans-
form. In figure 11(d) we plot the radially averaged absolute 
value (or power spectrum) of Ĩx(q) and find that the power 
spectra of local area fraction and entropy are overlapped in a 
wide range of the wave-vector q, displaying similar features 
at particular modes, such as a peak at qσlarge ≈ 3.6, while 
the mobility spectrum is globally blind to such features. 
In figure  11(e) we directly plot the inferred local entropy 
against the measured mobility, revealing a weak positive cor-
relation between the two — larger displacements tend to be 
observed in high entropy regions. This analysis suggests (1) 
that features present in the spatial fluctuations of the local 

area fraction field are reproduced in the local entropy field 
and (2) that weak positive correlations exist between the 
local entropy and the measured particle mobility. The weak 
correlation between a local static measure such as the area 
fraction (or the interpolated local entropy) and the mobility 
is compatible with the finding that the correlation between 
dynamical heterogeneities and local structure is highly 
system-dependent [39–41].

To complete the picture of static correlations we com-
pare the coordination number around small and large parti-
cles in experiments and simulations with stationary pinning, 
figure 12. We compile all experimental data regardless of the 
pinning concentration and plot the fraction of particles of type 
x that have coordination z, Nz

x/Nx , with particular focus on 
z  =  5, 6, 7 (pentagonal, hexagonal and heptagonal local order 
respectively). In numerical simulations we pin particles from 
well equilibrated configurations for every total area fraction. 
Therefore, we expect the local order to be solely determined 
by the total area fraction. We indeed observe that the fraction 
of particles with a given coordination does not vary between 
c  =  0 and c  =  0.16. Hence, we plot Nz

x/Nx  in figure 12 from 
the simulations only as a function of η in order to guide the 
interpretation of the experimental measurements.

Both simulations and experiments show that the fraction 
of small particles with coordination z  =  5 and the fraction 
of large particles with z  =  7 increase with increasing total 
area fraction, while the reverse occurs for small particles with 

Figure 11. Spatial analysis of an experimental sample at η = 0.715 with a pinning concentration of c  =  0.08. In (a)–(c) the local area 
fraction, the interpolated local entropy and the local mobility in the interior regions of the sample (i.e. excluding the borders) are mapped 
onto fine two-dimensional grids of 256 × 256 cells. In (d) we plot the radially averaged power spectra Ĩη(q) (blue), Ĩs(q) (orange), Ĩm(q) 
(green) of the scaled Fourier transforms of (a)–(c).
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z  =  7 and large particles with z  =  5. The fraction of parti-
cles with coordination z  =  6 decreases as the area fraction 
increases, for both large and small particles, both in simu-
lations and in experiments. For η � 0.8 the experiments are 
not equilibrated and we indeed observe (within the scatter of 
the data) that the fraction of z-coordinated particles reaches a 
plateau. In previous analysis of a soft-core two-dimensional 
glass former [42], the large/small particles in pentagonal/ 
heptagonal Voronoi cells were interpreted as ‘liquid-quasi-
species’ while large/small particles in heptagonal/pentagonal 
cells were seen as ‘glasslike quasispecies’. The evolution of 
the populations of the z-coordinated particles is in agree-
ment with these trends and the plateau in the experiments for 
η > 0.80 is another signature of the nonequilibrium nature of 
the high area fraction samples. In the case of the experiment, 
we also analyse the subpopulation of pinned particles in order 
to identify eventual systematic differences between them and 
the total population. We do not find any significant discrepan-
cies between the two, supporting the idea that adsorption and 
hence pinning in experiment are not determined by the nature 
of the local order.

In conclusion, we have shown, from numerical simula-
tions, that the configurational entropy of the liquid is reduced 
as the area fraction is increased and the relaxation times 
increase. At the local level, we are able to map local area frac-
tion and local pinning concentration to entropy fluctuations. 
This mapping is such that the spatial extent of entropy fluctua-
tions is strongly correlated with area fraction fluctuations but 
only weakly correlated to mobility fluctuations. As the bulk 
configurational entropy decreases with increasing area frac-
tion, we have confirmation from both numerical simulations 
and the experiments that local hexagonal order is suppressed 
while large particles become mostly 7-coordinated and small 
particles 5-coordinated, regardless of whether or not a particle 
is pinned.

5. Non-equilibrium growth of the pinning 
concentration

In an experimental sample, particles become irreversibly 
pinned as time proceeds, so that, with suitable preparation and 
observation time, it is possible to measure a global increase 
in the pinning concentration. Here we report particular exper-
imental instances in which significant increase in c is observed. 
The system here is out of equilibrium and therefore represents 
a fundamentally different pinning protocol to that discussed in 
the previous section. The system has insufficient time to relax 
and de-correlate at each successive step in pinning concen-
tration. The correlation time increases due to the progressive 
increase in c and the system traverses the unpinned liquid/
pinned glass crossover.

Using the interpolated configurational entropy sloc, 
figure 13 shows that local entropy appears strongly correlated 
to the increase in pinning concentration in experiments. 
However, this is a consequence of the interpolation proce-
dure, which takes into account local area fraction and pin-
ning concentration, shifting the local entropy to lower values 
when sufficiently large pinning concentrations are meas-
ured. Furthermore, pinned particles freeze-in local area frac-
tion fluctuations and these are reflected in the local entropy 
fluctuations.

Are changes in local structure observed as c increases? To 
address this question we make use of the definition of two-
body excess entropy. We analyse the progressive immobilisa-
tion of the system with two parameters: the local two-body 
entropy, equation  (7), and the root square displacement of 
the particles from reference configurations. We measure the 
local two body entropy, s̃, at time tx = t0, . . . tn and compare 
the resulting two-body excess entropy colormaps with those 
obtained from the single particle mobility defined in equa-
tion (9), where ∆t ≈ 200 s.

In figure  14 we show two-body excess entropy and 
mobility maps for a system with area fraction of η = 0.83. 
A spatial correlation between these quantities is not immedi-
ately evident, except for some features at early times (e.g. the 
low entropy region in middle of the sample corresponds to a 
compact region of low mobility). As more particles become 
pinned, the mobility field appears to gradually flatten, sug-
gesting that dynamical heterogeneity is suppressed, while 
little change is observed in the entropy field.

In order to substantiate the above statements more quanti-
tatively, we plot the correlations between entropy and mobility 
as pinning fraction increases, figure 15. Here we see that if a 
weak correlation is present at early times, this is not the case 
at later times and higher pinning concentrations. In particular, 
the very large increase of the p-value indicates that the null 
hypothesis that the correlation coefficient is zero is increas-
ingly plausible as time evolves, and that any eventual cor-
relation at high pinning concentration is spurious. In these 
conditions, the local entropy (and hence any change in struc-
ture) is blind to the dramatic decrease of mobility induced 
by pinning. In this sense, the changes in the pinning field do 
not correspond to structural changes significant enough to be 
identified by the local two-body excess entropy.

Figure 12. Comparison between the particle coordination in 
experiments and simulations. We plot the fraction of particles 
of type x that have coordination z. Empty symbols represent 
experimental data for all large/small particles. Filled red symbols 
correspond to pinned particles. Connected symbols are results from 
the simulations: coordination z  =  5 particles are in black (�: large, 
�: small), z  =  6 in green (+: large, ×: small) and z  =  7 (�: large, 
�: small) are in light blue.
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Figure 13. The increase in pinning concentration is mapped onto changes in the local configurational entropy sloc in an experiment with 
area fraction η = 0.85. Particle colour represents local configurational entropy as indicated in the colour bar. Black particles are identified 
as immobile. (a) At time t1 = 1000 s, few particles are pinned and the areas of low configurational entropy are limited (lower left corner). 
(b) By a later time t2 = 2000 s the pinning concentration has risen to c  =  0.15 and more extended regions of low entropy appear as a direct 
consequence.

Figure 14. Time evolution of experimentally measured (a) local two-body excess entropy and (b) mobility m(t) in units of σlarge for 
t = 1∆t, 4∆t, 9∆t  at η = 0.83. Green circles indicate pinned particles at concentration c(t). In grey we plot particles for which mobility 
cannot be computed as they are not identified both in the initial and final frame.

Figure 15. Correlation (or lack thereof) between the local entropy ̃s and the mobility as time evolves and the concentration of pinned 
particles increases: (a) c  =  0.01, (b) c  =  0.018, (c) c  =  0.026, (d) c  =  0.037, (e) c  =  0.075.
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6. Conclusions

In this work we present a novel method to study dense two-
dimensional suspensions of hard colloids under the effect 
of a field of immobilised particles. We have shown that it is 
possible to realise systems that are at steady state for several 
hours, allowing the measurement of local fluctuations in area 
fraction. Using computer simulations, we have interpreted our 
data showing that there is a strong anti-correlation between 
the spatial fluctuations in area fraction and the reduction of 
local entropy, according to two alternative measures of local 
entropy. The presence of pinned particles does not appear to 
change the structure of the liquid but, as expected, it reduces 
the bulk entropy by restricting the accessible configurational 
space. Structural changes in the particle coordination are 
solely determined by the increase in area fraction. With the 
concentration of pinned particles kept constant, local entropy 
fluctuations are weakly positively correlated with the reduced 
mobility of the particles.

On longer time-scales, our protocol allows us to observe 
the response of the system to a monotonic increase of the 
concentration of pinned particles. We attempted to identify 
any predictive power in the local fluctuations of the two-body 
excess entropy, in particular with respect to the mobility of the 
system. The available data suggests that local entropy fluctua-
tions at time t0 are weakly correlated with the local mobility 
at immediately subsequent times but are uncorrelated as time 
progresses and pinning concentration increases. While the 
progressive increase in pinning has deep consequences on the 
global scale, its local consequences are trivial. In particular 
it does not appear to affect the structure, as expected from 
theory [9].

Our experimental method is competitive with respect to 
alternative pinning techniques such as optical tweezers as it 
allows us to perform large scale pinning at a very limited cost, 
providing detailed particle-level structural and dynamic infor-
mation. However, the drawback of approaching this problem 
in two-dimensions is that no sharp transition occurs and only a 
weak crossover between an unpinned and a pinned regime can 
be studied. Fluctuations in order parameters such as the patch-
entropy of Sausset and Levine [43] or a measure of the degree 
of local crystalline order [44] could help to characterise the 
continuous emergence of the arrested phase. Considering 
local structural signatures based on higher order expansions 
of the excess entropy accounting for multiparticle correlations 
[45] could potentially reveal more subtle structural changes 
triggered by pinning, relating higher order static correlations 
to the dynamics [3].

Overall, our extensive experimental and simulation study 
shows that the effects of random pinning in two dimensional 
glass formers is very subtle. Thoughtful and careful analysis is 
required to disentangle the effects of system density and pin-
ning concentration on the observed structure and dynamics. 
We have, however, revealed various correlative relationships 
which may serve as a roadmap for more targeted future studies 
in two dimensional systems under random pinning.
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Appendix. Configurational entropy

We consider the system as a binary mixture of ideal hard 
spheres, for which we know the equation  of state P(η, c) 
from the molecular dynamics calculations. We compute the 
configurational entropy from the difference between the total 
entropy and the vibrational part. The total entropy is computed 
with reference to an ideal gas filling a box with a prescribed 
concentration of pins c that represent inaccessible regions. 
Throughout, we very closely follow the approach of Angelani 
and Foffi [32, 33], who originally illustrated the method for a 
binary mixture of hard spheres. We refer to their work for a 
more detailed discussion of the validity and the limitations of 
such numerical technique. Here, we underline that this route 
constitutes one of the possible methods to compute the con-
figurational entropy of supercooled liquids. In fact, that recent 
calculations [46] show that this method is in qualitative agree-
ment with alternative methods, despite a systematic overesti-
mation of the number of distinct metabasins.

We start writing the total entropy as the sum of an ideal and 
excess contribution

Stot(ρ, c) = Stot(ρ) + Sexc(ρ, c). (A.1)
We need to take care of the distinction between pinned 

and unpinned particles. The number of mobile (unpinned) 
particles is M = N(1 − c) where N is the total number of 
particles and c the pinning concentration. The density of non-
pinned particles ρM  is defined as number of mobile particles 
M divided by the accessible area Aa  =  A  −  Nca, where A is 
the total area of the box and for our equimolar binary mixture 

a = π(σ2
large + σ2

small)/8 = η/ρ, that is

ρM = M/Aa = ρ(1 − c)/(1 − cη). (A.2)

The configurational entropy for M ideal gas particles at 
density ρM  is given by

Stot(ρM , c) = M(2 − ln ρM + ln 2 − 2 lnλ) (A.3)

= (1 − c)N
(

2 − ln ρ
(1 − c)
1 − cη

+ ln 2
)

, (A.4)

where the log 2 term accounts for the entropy of mixing and 
λ is the thermal de Broglie wavelength λ =

√
2πβ�2/m that, 

for simplicity, we set to λ = 1 . The excess part is computed 
from the equation of state

Sexc(ρM , c) = −βM
∫ ρM

0
dρ′M

Pexc(ρM , c)
ρ′2M

, (A.5)

which, in terms of the total density, reads
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Sexc(ρ, c) = −βM
∫ ρ

0

Pexc(ρ, c)
ρ′2

1 − c
(1 − ρ′ca)2 dρ′. (A.6)

From the sum of the ideal and excess contributions we 
subtract the vibrational part. Following closely the approach 
detailed in [32], the vibrational contribution is obtained 
through a thermodynamic integration approach. The original 
Hamiltonian is modified so that we obtain an augmented 
Hamiltonian

βH′ = βH +
1
2
αM(�r −�r0)

2, (A.7)

where the second term represents springs of strengths α cou-
pled to a reference configuration �r0, chosen among equilib-
rium configurations. The exact same argument as in [32] can 
be followed, the main difference being the dimensionality of 
our system. Hence, the free energies F(α0), F(α∞) of two 
systems with different spring constants α0,α∞ are related by

βF(α∞) = βF(α0) +

∫ α∞

α0

dα′/2

〈
M∑

i=1

(�r −�r0)
2

〉

α′

, (A.8)

where 〈. . . 〉α′ is the canonical average for a given 
α′. For α∞ → ∞ (very hard confining potential) 
the particles cannot escape and the free energy is 
βF(α∞) = 2M lnλ+ βE0 + M ln(α∞/2π), where E0 is 
the energy of the reference configuration �r0. Writing the 
free energy as a sum of a potential and an entropic term 
βF(α∞) + M − Svib it is possible to write down the vibra-
tional entropy as:

Svib = M
∫ α∞

α0

dα′〈(�r −�r0)
2〉/2 − M ln

α∞λ2

2π
+ M, (A.9)

where α0 and α∞ respectively represent the limit for which 
the particles can escape from the reference configuration and 
the limit for which the quadratic potentials are infinitely steep. 
Again, for consistency, we set the de Broglie wavelength to 
λ = 1.

In figure A1 we show the typical dependence on α of the 
integrand in equation (A.9). The method inherently has some 
arbitrariness in the choice of the lower limit of the integra-
tion α0: particles need to be able to move within their cages 
without escaping from them. From the shape of the curves in 
figure A1 we identify a crossover regime at low α where the 
mean squared displacement rapidly increases as we decrease 
α. Consistently with similar choices made in the literature 
[33], we choose a value of α0 close to the crossover region, 
α0 = 100.

Finally, the configurational entropy is then obtained as

Sconf = Stot + Sexc − Svib := Msconf. (A.10)
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