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Understanding the phase behaviour of mixtures continues to pose challenges, even for systems that
might be considered “simple.” Here, we consider a very simple mixture of two colloidal and one
non-adsorbing polymer species, which can be simplified even further to a size-asymmetrical binary
mixture, in which the effective colloid-colloid interactions depend on the polymer concentration.
We show that this basic system exhibits surprisingly rich phase behaviour. In particular, we enquire
whether such a system features only a liquid-vapor phase separation (as in one-component colloid-
polymer mixtures) or whether, additionally, liquid-liquid demixing of two colloidal phases can occur.
Particle-resolved experiments show demixing-like behaviour, but when combined with bespoke Monte
Carlo simulations, this proves illusory, and we reveal that only a single liquid-vapor transition occurs.
Progressive migration of the small particles to the liquid phase as the polymer concentration increases
gives rise to composition inversion—a maximum in the large particle concentration in the liquid phase.
Close to criticality, the density fluctuations are found to be dominated by the larger colloids. Published
by AIP Publishing. https://doi.org/10.1063/1.5023393

I. INTRODUCTION

It is difficult to overstate the importance of mixtures
as they constitute the vast majority of materials. The most
basic mixtures are those of two species, and studies of such
binary atomic and molecular mixtures have a distinguished
history. In particular, much is known about the topologies of
their possible phase diagrams from a theoretical perspective.1,2

However, experimental studies of such systems do not gener-
ally provide detailed information on central features such as
the compositions and structure of coexisting phases, the char-
acter of near-critical fluctuations, and the link between the
form of the microscopic interactions and the phase behav-
ior. In this respect, colloidal dispersions are versatile sys-
tems for gaining insight into these basic aspects of phase
behaviour.3,4

Adding non-adsorbing polymer depletant induces entrop-
ically driven attraction between colloidal particles, and such
mixtures can be interpreted as colloidal systems with the poly-
mer degrees of freedom integrated out. Because the result-
ing colloid-colloid interactions are very similar to those of
atoms and molecules, these systems likewise exhibit fluid,
liquid, and crystalline phases, along with metastable states
such as glasses and gels.5,6 A key advantage over atomic and
molecular systems is that one can readily modify the strength
and range of the effective particle interactions while directly
observing the structure at the particle-resolved level using
microscopy.4

Although colloid-polymer mixtures have proven invalu-
able in elucidating the properties of single-component

fluids,5,7,8 surprisingly, little attention has been given to
binary colloidal mixtures (plus polymer depletant). Investiga-
tions to date include sedimentation profiles, where kinetics
and equilibrium phase behaviour can exhibit a complex
interplay,9–11 and studies of dynamics, where electrostatic
interactions lead to non-intuitive behavior.12 Studies of phase
behaviour indicate a time-dependent stratification of the sed-
iment into layers with differing composition.10,11 We note
that complex behaviour can occur under a gravitational
field,13–16 and it is uncertain whether the stratification ob-
served in Refs. 10 and 11 is thermodynamic or gravitational in
origin.

The current theoretical understanding of such mixtures
remains relatively little developed. One important result is that
the free-volume approach of Lekkerkerker et al.17 can be gen-
eralised to the present ternary mixture of two colloid species
and polymer and predicts only vapor-liquid coexistence for the
parameters of our experiments.18 Here, we report a combined
experimental and simulation study of the phase behavior of a
binary colloid mixture with a single species of added polymer.
We describe the system in terms of an effective binary colloidal
mixture in which the explicit polymer degrees of freedom are
integrated out: colloidal interactions then take a form that is
parameterized in terms of a polymer reservoir mass fraction
cr

p that plays the role of inverse temperature. Central questions
concern (i) the topology of the phase diagram of such a sys-
tem and (ii) the structure and composition of the coexisting
phases.

As the effective interactions between colloids resemble
those found for binary mixtures of simple atomic fluids, we

0021-9606/2018/148(18)/184902/10/$30.00 148, 184902-1 Published by AIP Publishing.

https://doi.org/10.1063/1.5023393
https://doi.org/10.1063/1.5023393
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5023393&domain=pdf&date_stamp=2018-05-09


184902-2 Zhang et al. J. Chem. Phys. 148, 184902 (2018)

might expect to find phase behaviour similar to that pro-
posed previously on the basis of mean field theories of a van
der Waals mixture. Reference 2 identified several classes of
possible phase diagram topology, which were subsequently
found to apply to a wide range of real atomic and molec-
ular mixtures.1 The classes are delineated by the degree of
immiscibility of the two components. For mixtures in which
the two species are not too dissimilar, one of two scenarios
is predicted: For type I behavior, the system exhibits only
liquid-vapor phase separation, which for our case would cor-
respond to coexistence between a colloid-rich “liquid” phase
(dilute in polymer) and a polymer-rich “vapor” phase (dilute
in colloids). Type II phase diagrams occur when the immis-
cibility is stronger: following liquid-vapor phase separation,
a further transition occurs at sufficiently large cr

p (low effec-
tive temperature) corresponding to a deep quench in which
liquid-liquid demixing occurs at a critical end point, with a
line of demixing critical points extending to higher densities.
Below a critical end point, two liquids—one rich in the larger
colloids and the other in the small colloids—coexist with a
vapor phase. Possible scenarios are sketched in the second row
of Fig. 1.

Although there are basic similarities with simple atomic
mixtures, the colloidal system we study exhibits key differ-
ences: (i) the ratio of the colloid diameters, 0.57, is rather large
and (ii) unlike atomic mixtures the range of all three attrac-
tive (colloid-colloid) pair interactions is identical since this is

set by the size of the single polymer species. Moreover, the
well depth of the effective depletion attraction between two
large particles is about twice that between two small particles.
Thus, it is not clear a priori which scenario for the fluid phase
separation, type I or type II, should pertain in our system.
It is also conceivable that, given that the interaction between
the large colloids is stronger than that between the small col-
loids, the former might demix with the small acting in a similar
way to a “spectator phase.” Furthermore, at sufficiently large
cr

p, colloids can undergo gelation, which is not foreseen in
the classification scheme.2 Remarkably, we find that in our
experiments, the system appears to exhibit three-phase coex-
istence. However, careful analysis informed by simulation
reveals that this is illusory: there are two phases, yet their
composition changes so drastically that it gives the impres-
sion of a new phase. We choose to term this non-monotonic
behaviour of the ratio of volume fractions composition
inversion.

To understand this basic mixture, we combine particle-
resolved experiments4 with tailored Grand Canonical Ensem-
ble (GCE) Monte Carlo (MC) simulation.19 Our experiments
use confocal microscopy to provide real-space information on
composition fluctuations and fractionation effects. These char-
acterize phase coexistence and criticality in colloidal binary
mixtures. Our system consists of two species, i.e., two sizes
of fluorescently labelled colloidal particles that are (nearly)
density- and refractive index-matched to their solvent. To this

FIG. 1. Phase behaviour of binary colloid-polymer mixtures. [(a)–(c)] Confocal microscopy images (see text) with large (blue) and small (orange) colloids.
Insets show xz profiles that are 100 µm in height. (a) cp/c∗p = 0.059, possible two- or three-phase demixing as indicated by dashed lines in the inset; (b)
cp/c∗p = 0.069; (c) cp/c∗p = 0.090, gelation. Scale bars denote 10 µm. Possible scenarios by which the experimental data may be interpreted: (a1) Two-phase
coexistence—the lower (liquid) phase is rich in large particles and the upper (vapor) phase is rich in small particles and polymer; (a2) The colloidal mixture
exhibits liquid-liquid demixing; (b1) Upon deeper quenching, more small particles become entrained in the colloid-rich liquid.
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system, polymer is added. Our simulations provide compa-
rable information but are free from the influence of kinetics
and gravity; they access equilibrium properties. In particu-
lar, we obtain densities of coexisting phases and their spatial
fluctuations. In our simulations, the effective colloid-colloid
interactions are described by the Asakura-Oosawa (AO)
model,20,21 generalised to a binary system.

This paper is organised as follows. In the Methods section
(Sec. II), we discuss our experimental procedure in Sec. II A
and the way in which we map our data between experiment
and simulation is described in Sec. II B. The means we use
to arrive at an effective Hamiltonian for the binary colloid
system are described in Sec. II C, and our tailored simula-
tion methodology is introduced in Sec. II D. In the Results
section (Sec. III), we describe the single-component colloid-
polymer phase behaviour in Sec. III A before proceeding to the
phase behavior of the binary colloids plus polymer, which is the
main experimental result of this work in Sec. III B. Simulation
results for the phase behaviour are presented in Sec. III C. Our
finding of composition inversion is discussed in Sec. III D, and
we complete our results section by showing the behaviour of
near-critical fluctuations in Sec. III E. We conclude our paper
in Sec. IV.

II. METHODS
A. Experimental details

Two sizes of poly(methylmethacrylate) (PMMA) parti-
cles were used. Using static light scattering, the diameters
of the large l and small s particles were determined to be
σl = 1.84 µm and σs = 1.04 µm, respectively, with poly-
dispersity of 5% in each case. The colloid-colloid size ratio
is then qsl = 0.57. The larger particles were labeled with
the fluorescent dye 3,3-dioctadecyloxacarbocyanine perchlo-
rate (DiOC18), while the smaller particles were labeled with
1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlo-
rate (DiIC18). The solvent used was a mixture of tetra-
chloroethylene and cis-decalin, which closely matched the
refractive indices and densities of the two colloid species.
The colloids were produced in two separate syntheses, and
consequently, their mass density was slightly different. As
a result, it is not possible to completely density-match both
the species, and indeed, the solvent density lies between that
of the two species such that one creams and one sediments.
However, close density matching for colloids of this size leads
to gravitational lengths in excess of 10 particle diameters;22

so, we conclude that gravity has a small effect on the behav-
ior we observe. Polystyrene with molecular weight mw = 1.5
× 107 g mol�1 acted as the depletant, with radius of gyration
Rg ≈ 149 nm in the good solvent used,23 giving polymer-
colloid size ratios of ql = 2Rg/σl = 0.16 and qs = 2Rg/σs = 0.29
for the large and the small particles, respectively. The sizes of
the particles and the depletant were chosen such that a stable
colloidal liquid should exist for the mixture with only smaller
particles, while in the case of the larger particles, the liquid is
metastable to crystallization.5,6

We work in the vicinity of the critical isochore. For each
pure colloid species l and s, the critical colloid volume frac-

tion was estimated from the literature8,24–26 to be φc
l = 0.26

and φc
s = 0.22, respectively. For the mixture, an intermediate

total overall volume fraction of φtot ≡ φs + φl = 0.24 was cho-
sen, with φs = φl, implying that the overall concentration of
large particles is X l ≡ N l/(N s + N l) = 0.143. We focus on state
points along this isochore distinguished by the choice of poly-
mer mass fraction cp. Since colloid-polymer mixtures have
large critical regimes with relatively flat binodals, a precise
determination of the critical isochore is not essential for the
purposes of observing near-critical fluctuations.8 When plot-
ting experimental results, we use the ratio cp/c∗p, where c∗p is
the value at overlap.

Phase diagrams in the experiments are determined as fol-
lows. In single-phase regions (one-phase fluid or gel), we quote
the colloid volume fraction at which the sample is prepared.
In the case of phase separation, a sedimentation profile is used
to determine the volume fraction of each colloid species as a
function of height.

Sedimentation profiles were obtained from an intensity
analysis that was calibrated using images of samples having
known volume fraction. The fraction of the total intensity due
to each species is nearly linearly dependent on the volume
fraction of that species.9 Given the calibration, we then deter-
mine the volume fraction as a function of position. Specifically,
the volume fractions of both colloid species φi(x, y, z) where
i = l, s were calculated from an intensity average fraction
around the point (x, y, z), i.e.,

φi(x, y, z) ≈ C

∑Lx
x=−Lx

∑Ly
y=−Ly

∑Lz
z=−Lz

Ii(x, y, z)

8ImaxNxNyNz
, (1)

where C ≈ 1 ± 0.012 is a calibration constant and Nx, Ny,
N z are the number of pixels in [�Lj, Lj]. In our case, Li is
selected to be 7.0σl as in the simulations and j ∈ {x, y, z}. Imax

= 255 is the maximum intensity, scaled by 8 to reflect the two
channels. The sedimentation profile was obtained by scanning
the xy plane at every z position.

B. Mapping experiment to simulation

As noted above, our experimental results are plotted in
terms of the dimensionless ratio cp/c∗p, where c∗p is the poly-
mer mass fraction at overlap and cp refers to the polymer
mass fraction in the actual (experimental) polymer-colloid
mixture. On the other hand, models and simulations of such
mixtures are most naturally formulated in terms of a poly-
mer reservoir, with a given chemical potential µp, which is in
osmotic equilibrium with the actual system. One can convert
from the reservoir to the system representation if one knows
the free volume fraction α(φl, φs; zp) that relates the num-
ber density of polymers in the system to that in the reservoir
ρr

p:

ρp(φl, φs; zp) = α(φl, φs; zp)ρr
p(zp), (2)

where zp is the fugacity of the polymer. Free volume arguments
suggest that the free volume fraction can be approximated by
its value in the limit zp → 0, i.e., vanishing polymer den-
sity. Within the context of the Asakura-Oosawa model, where
the polymer is ideal and zp = ρr

p (see Subsection II C), the
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free volume fraction is easily calculated from Percus-Yevick
(PY) results, equivalent to scaled particle theory, for the excess
chemical potential of a binary hard-spheres (HS) mixture.17,27

We have generalized this approach to the ternary HS case, and
within the PY approximation, we find the following result in
the limit zp → 0:

αPY(φl, φs; zp = 0) = (1 − φtot) exp
[
−Ãγ̃ − B̃γ̃2 − C̃γ̃3

]
, (3)

where

γ̃ =
1

1 − φtot
, (4)

Ã = φlq
3
l + φsq

3
s + 3(φlq

2
l + φsq

2
s ) + 3(φlql + φsqs), (5)

B̃ =
9
2

(φlql + φsqs)
2 + 3(φlq

2
l + φsq

2
s )(φlql + φsqs), (6)

and
C̃ = 3(φlql + φsqs)

3. (7)

In the limit where the volume fraction of one colloid
species vanishes, this result reduces to that of Lekkerkerker
et al.17 For our experimental conditions, ql = 0.16, qs = 0.29,
φl = φs = 0.12, we find that this approximation gives a free
volume fraction αPY ∼ 0.6. Theory and simulation for the AO
model usually work with the polymer reservoir volume frac-
tion φr

p = πσ3
p ρ

r
p/6. This quantity sets the strength of the

attractive interactions [see Eq. (12) and Fig. 3]. For exam-
ple, our simulations yield a critical point at φr

p = 0.375(5).
In the text, we use the term cr

p, the polymer reservoir concen-
tration, to denote φr

p. Since for fixed φl and φs, αPY in (3)
is constant, it follows that to a good approximation we can
convert from simulation to experiment assuming cp/c∗p ∝ φ

r
p.

We fix the constant by matching the critical points in simu-
lation and experiment. We estimate the experimental critical
point to be at cp/c∗p = 0.057 ± 0.002 [see Fig. 5(iii)]. There
is a small deviation from linearity (<5%) upon phase separa-
tion. Although we could correct for this using the appropri-
ate colloid volume fractions in αPY , this would not remove
other errors in the mapping. These arise from polymer non-
ideality, deformation, and other deviations from the ideal AO
model.28–31

C. The effective two-component Hamiltonian

In this subsection, we describe the model that we investi-
gate in simulations. We consider a ternary system consisting
of two species of colloids, modelled as large and small hard-
spheres (HS) with different diameters σl, σs, plus a single
polymer species p. The Hamiltonian is

H = Hll + Hss + Hls + Hlp + Hsp + Hpp , (8)

where H ll denotes hard sphere (HS) interactions between ll,
Hss denotes HS interactions between ss, and H ls denotes HS
interactions between unlike species. The ls HS interaction
potential uHS

ls (r) is assumed additive so that the cross-diameter
σls ≡ (σl + σs)/2. The polymer coils are treated as mutu-
ally interpenetrable (non-interacting or ideal) so that Hpp = 0.
However, the centre of mass of a coil is excluded from the
large colloid centre to a distance (σl + σp)/2 or (σs + σp)/2
for the small colloid. The diameter of the polymer is

σp = 2Rg, where Rg is the radius of gyration of the poly-
mer. Equation (8) defines the Asakura-Oosawa (AO) model for
our present ternary mixture.20,21,32 Henceforward, we ignore
trivial kinetic energy terms.

Following Ref. 27, we work in the semi-grand ensem-
ble where the numbers N l and N s of the large and small HS,
respectively, are fixed, as are the volume V, inverse tempera-
ture β, and the polymer fugacity zp = Λ

−3
p exp(βµp). Here,Λp

is the thermal de Broglie wavelength and µp is the chemical
potential of the polymer reservoir. For ideal polymer, we recall
zp = ρr

p, the polymer density in the reservoir. The thermody-
namic potential F appropriate to this ensemble is given by a
direct generalization of Eq. (3) in Ref. 27, and the effective
Hamiltonian of the two-component colloid mixture, obtained
by integrating out the polymer degrees of freedom, takes the
form

Heff = Hll + Hss + Hls +Ω , (9)

where Ω is the grand potential of the fluid of ideal polymer in
the field of a fixed configuration of N l and N s HS colloids. Ω
depends on the coordinates of both the HS species.27

Extending the analysis presented in Ref. 27 to the binary
HS case leads directly to a diagrammatic expansion of Ω,
which generalizes Eq. (6) of Ref. 27; i.e., Ω is a sum of
zero, one-body, two-body, and higher body colloidal terms
that involve integrals over products of lp and sp Mayer
bonds. The upshot is that the effective Hamiltonian takes the
form:

Heff = H0 +
Nl∑
i<j

ueff
ll (Rij) +

Ns∑
i<j

ueff
ss (Rij)

+
Nl∑
i=1

Ns∑
j=1

ueff
ls (Rij) + H.O. terms, (10)

where Rij is the distance between the centres of particles i
and j and the effective ll (or ss) pair potential ueff is that
pertaining to a one-component HS l (or s) AO system with
the appropriate HS diameter σl (or σs).27 The new two-body
term is the effective ls pair potential that we write out explic-
itly below. The first term in Eq. (10) is the sum of zero and
one-body term which, for a uniform mixture with constant
densities, is

βH0 = −zpV
[
1 − φl(1 + ql)

3 − φs(1 + qs)
3
]
, (11)

where φl = πρlσ
3
l /6, with number density ρl = N l/V, is the

volume fraction of the large (l) HS and equivalently for s.
As noted earlier, the size ratios are ql = σp/σl, qs = σp/σs.
Since H0/V depends linearly on ρl and ρs, this term does
not affect the phase equilibria,27 which is the concern of
the present study. The higher order terms in (10) correspond
to 3-body, 4-body, etc., effective inter-colloidal interactions.
Generally, these terms are non-zero and, as the size ratios
increase, we expect an increasing number of higher body con-
tributions. However, for a sufficiently asymmetric case, i.e.,
with qs < (2/

√
3 − 1) = 0.1547 and following arguments of

Ref. 27, it is easy to show that three- and higher body terms
vanish identically in (10). Thus, in this regime, pair poten-
tials alone determine phase equilibria, equilibrium distribution
functions, and probability distribution functions (pdf). This is
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an important result. It implies that for sufficiently asymmet-
ric cases, the ternary AO system can be mapped exactly to a
two-component colloid mixture in which the colloids interact
solely through pair potentials. We return to this observation
below.

It remains to specify the ls effective pair potential. This
is easily calculated. The attractive depletion or AO potential
uAO

ls (r) is equal to the volume of the lens formed by the overlap
of depletion layers around l and s times �zp β

�1. The geometry
of the overlap is illustrated in Fig. 2. We find:

βueff
ls (r) = βuHS

ls (r) + βuAO
ls (r) =




∞ , 0 < r < σls

φr
p

σ3
p

(σls+σp−r)2[3(σl−σs)2−8r(σls+σp)−4r2]
8r , σls < r < σls + σp

0 , r > σls + σp

, (12)

where r is the distance between the centres of colloid l and col-
loid s and φr

p = πρ
r
pσ

3
p/6 is the volume fraction of the polymer

in the reservoir. It is straightforward to show that (12) reduces
to the standard one-component AO result whenσl =σs =σls.27

The three effective pair potentials ueff
ll (r), ueff

ss (r), and ueff
ls (r)

have different hard-core diameters but exhibit identical finite
range of attraction, equal toσp, the diameter of the single poly-
mer species. These pair potentials, employed in our computer
simulations, are each proportional to φr

p, which implies that
this quantity plays the same role as does inverse temperature
in simple atomic fluids. A plot of the potentials, divided by φr

p,
is given in Fig. 3 for the experimental size ratios ql = 0.16 and
qs = 0.29. For these parameters, the depth of the ll depletion
potential is about 1.7 times the ss depth, while the ls depth is
about 1.24 times the ss depth. Note that these pair potentials
are somewhat different from those one might choose to model
a binary mixture of atomic fluids, say Xe and Ar. In our case,
the range of the interaction is identical for all these pair poten-
tials, whereas for the atomic case the range increases with the
size and polarizability of the species.1

Although the value of ql we employ is only very slightly
greater than 0.1547, i.e., the value where three-body contri-
butions begin to contribute, qs is considerably larger. This
implies that in mapping the ternary AO model, for these par-
ticular parameters, to the effective two-component mixture,
some many-body interactions are omitted. One can estimate
the importance of the latter by considering the mapping of the
standard AO model with species s only. For qs = 0.29, the pair
potential description provides an accurate description of the
full binary AO mixture.33

D. Tailored simulation methods

We employ grand canonical ensemble (GCE) Monte Carlo
simulation to study a binary mixture of particles interacting

FIG. 2. Geometry for depletion interaction between unlike colloids l and s
due to polymer p. The radius of the depletion sphere around l is (σl + σp)/2
and that around s is (σs + σp)/2. The overlap lens shape is indicated; its
volume determines the depletion potential given in Eq. (12).

via the AO potential of ueff
ll , ueff

ss and ueff
ls entering Eq. (10)

with ql = 0.16 and qs = 0.29. Use of the GCE allows accurate
and efficient simulation of fluid phase transitions and critical
phenomena because it provides for density fluctuations on the
scale of the simulation box. Traditional approaches of MD sim-
ulation in the microcanonical or canonical ensembles, while
more straightforward to implement, lead to accuracy problems
and, particularly for fluid mixtures, to enhanced finite-size
effects.34 Our approach is tailored to exploit the accuracy and
flexibility of the GCE while simultaneously adhering to the
experimental conditions of fixed overall volume fractions of
the two components: φl = φs = 0.12. The challenge is to sat-
isfy this global constraint on average, even when the system
has separated into m coexisting phases, each occupying a cer-
tain proportion of the total volume. Under these conditions,
the coexisting phases are generally “fractionated”; i.e., their
compositions differ from one another and one should like to
determine the composition of each phase and the fraction of
the system that it occupies.

To see how this can be achieved, consider the distribu-
tion of particles between the phases. This is described by a
generalized lever rule:

φ(0)
l =

m∑
γ=1

ξ(γ)φ
(γ)
l , (13)

φ(0)
s =

m∑
γ=1

ξ(γ)φ
(γ)
s . (14)

FIG. 3. The three effective pair potentials βueff (r) plotted versus r/σp for
size ratios ql = 0.16 and qs = 0.29. Note that the range of the attraction is σp
for all the three potentials.
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Here, φ(0)
l = Nlσ

3
l /(6V ), φ(0)

s = Nsσ
3
s /(6V ) are the overall

(global) volume fractions of the two species l and s; ξ(γ),
γ = 1, . . ., m is the phase fraction of phase γ, which satisfies∑m
γ=1 ξ

(γ) = 1; φ(γ)
l , φ(γ)

s are the volume fractions of the individ-
ual components in phase γ. It follows that in order to specify
the coexistence properties of the system for some prescribed
φ(0)

s and φ(0)
l , one must determine ξ(γ), φ(γ)

s , φ(γ)
l for each phase

γ. This can be done iteratively within a histogram reweighting
framework, using a variant of an approach originally devel-
oped in the context of polydisperse fluids.35 Specifically, for
given φ(0)

s , φ(0)
l and φr

p, one regards the chemical potentials µs

and µl and the phase fractions ξ(γ) as parameters to be tuned
such as to satisfy both the generalized lever rule Eqs. (13)
and (14) and equality of the probability of the phases. For this
purpose, it is expedient to define a suitable order parameter
probability distribution function (pdf), such as a density or
composition distribution, which exhibits distinct peaks, one
for each phase. The equality of the peak weights determines
the conditions for which the phases are equally probable,
which within the GCE implies that the phases have equal pres-
sure. Additionally, the peaks in the pdf allow one to assign
any given configuration to a phase on the basis of its order
parameter. This in turn permits the ready determination of
the ensemble-averaged volume fractions φ(γ)

s and φ(γ)
l , which

appear in the lever rule. Since the order parameter pdf typi-
cally exhibits large probability barriers corresponding to mixed
phase states, its form is best determined using multicanonical
preweighting.19,34

Use of this method allows ξ(γ), φ(γ)
s , φ(γ)

l to be determined
with finite-size errors that are exponentially small in the sys-
tem size.35 This is true even if the prescribed coexistence state
point lies close to the phase boundary, i.e., close to one end of
a coexistence tie line, where the phase fraction of one phase
vanishes. Standard methods for determining phase coexistence
properties struggle in this regime because the minority phase
contains very few particles. In our method, however, the phases
that occur near the end of the coexistence tie line are instead
studied under conditions corresponding to the center of the
tie line. Here, the system fluctuates with equal probability
between configurations in which each phase fills the simulation
box in turn. This minimizes finite-size effects, while applica-
tion of the lever rule condition allows us to infer accurately
the phase fractions corresponding to the state point of interest
close to the phase boundary. We note that our approach is more
powerful and accurate than the Gibbs Ensemble MC method
for obtaining phase behaviour of fluid mixtures, as discussed in
Ref. 19.

III. RESULTS
A. Phase behavior of single colloid
species-polymer mixtures: Experiment

We begin by noting the phase behavior of mixtures con-
sisting of a single colloid species and polymer. For a sample
comprising solely of large particles at the estimated critical
colloid volume fraction of φc

l = 0.26, liquid-vapor phase sep-
aration occurs at cc

p/c
∗
p = 0.055±0.005; likewise, for a sample

comprising solely of small particles at the estimated critical

FIG. 4. Phase diagrams of colloid-polymer mixtures with one species of col-
loids. Orange data points are for the small particles (qs = 0.29), with critical
volume fraction φc

s = 0.22. Blue data points are for the larger particles
(ql = 0.16), with critical volume fraction φc

l = 0.26. Squares indicate phase
coexistence or gelation; circles indicate a one-phase fluid. The dashed lines
indicate purported phase boundaries ascertained from confocal images taken
at various state points.

volume fraction of φc
s = 0.22, phase separation occurs at

cc
p/c
∗
p = 0.0825 ± 0.0025. The phase boundaries for both the

systems are indicated in Fig. 4.

B. Phase behavior of binary colloid-polymer
mixtures: Experiment

The bidisperse colloid mixture undergoes phase separa-
tion at cc

p/c
∗
p = 0.057 ± 0.002, indistinguishable from the

system of large particles only. Confocal images in the xy plane
at height z near the bottom of the container are shown in
Fig. 1. The insets show the system in the xz plane. Consider
first Fig. 1(a) that is for cp/c∗p = 0.059, corresponding to a
shallow quench to a state point just within the phase coexis-
tence region. The inset shows separation into two (or possibly
three—see later) phases, the denser of which has sedimented.
The upper phase is overwhelmingly composed of small parti-
cles (orange), while the lower phase contains the vast majority
of the large particles (blue). However, the main panel reveals
substantial numbers of small particles in the dense phase as
well as significant spatial density fluctuations. On performing
a deeper quench to cp/c∗p = 0.069 [Fig. 1(b)], one finds very
different structure. From the inset, one observes phase separa-
tion with the denser phase sedimenting, but now there are many
more small particles in the lower phase and very few in the
upper phase. Finally, upon further quenching to cp/c∗p = 0.090
[Fig. 1(c)], the system undergoes dynamical arrest and a gel
forms. Both species occupy the dense interpenetrating arms of
the gel. A schematic phase diagram based on the analysis of
these images is given in Fig. 5(iii).

Despite the particle-level detail, the results of Fig. 1 do
not readily permit one to distinguish between type I and II
phase behaviour. Specifically, Fig. 1(a) could be interpreted in
a number of ways. The observation that the small colloids are
fairly uniformly distributed among the phases could be taken to
imply that the large colloids are somehow behaving as an effec-
tive one-component system that has undergone liquid-vapor
phase separation, while the small particles only “spectate” in
this process. Alternatively, it might be more appropriate to
think in terms of the mixture as a whole undergoing liquid-
vapor phase separation but with a strong fractionation of the
large particles to the liquid phase and only weak fractionation
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FIG. 5. (i) Grand Canonical Monte Carlo simulation results for the probability distribution P(φtot) in the vapor and liquid phases for various polymer reservoir
concentrations cr

p. The arrow denotes reducing cr
p and mapping to cp/c∗p = 0.0633 to 0.0587 in equal increments. The inset shows the large particle concentration

X l in the vapor and liquid phases, with the overall composition X l = 0.143 marked as a dashed vertical line; note the maximum of X l in the liquid phase denotes
composition inversion as detailed in the text. (ii) Simulation results for P(φl) and P(φs) in the vapor and liquid phases for values of cp/c∗p shown in the key.
Orange data denote small particles and blue data denote large particles. (iii) Schematic phase diagram. (a–c) refer to state points obtained in experiment depicted
in Fig. 1. Squares are gels, triangles are liquid-vapour coexistence, and circles are one-phase fluid. Simulation results for volume fractions of coexisting phases
are given by pale blue and orange lines.

of the small particles. This scenario is depicted schematically
in Fig. 1(a1). A further possible interpretation of Fig. 1(a)
is that liquid-liquid demixing occurred [Fig. 1(a2)] and two
colloidal liquid phases coexist with the third, polymer-rich
colloidal vapor, as indicated by the dashed lines in Fig. 1(a)
inset. However, if such type II behaviour occurs, it is curious
that the small particles subsequently remix with the large ones
in a dense phase at larger polymer concentration cp/c?p , as seen
in Figs. 1(b) and 1(b1).

C. Results from simulation

To help resolve which scenario applies, we appeal to our
Grand Canonical Monte Carlo simulation studies of the gen-
eralized Asakura-Oosawa model. Starting from the one-phase
regime, the polymer reservoir concentration cr

p was increased
following the experimental isochore until the systems entered
the coexistence region. This is indicated by the appearance of
a double-peaked structure in the probability distribution of the
fluctuating order parameter (which we take as the total vol-
ume fraction φtot = φl + φs), as shown in Fig. 5(i). One of
these peaks is at very low values of φtot , while the other is
at a high value, indicating that the transition is vapor-liquid-
like in character. We have followed the transition to large
cr

p where the liquid becomes very dense but see no sign of
a splitting of the liquid peak, which would indicate liquid-
liquid demixing, i.e., type II behavior. At higher densities,
it becomes difficult to sample the liquid sufficiently in our
simulations.

Thus, the simulations indicate that only a single vapor-
liquid transition occurs, implying type I behavior. Moreover,
they reveal that the puzzling differences between Figs. 1(a)
and 1(b) (which suggests possible liquid-liquid demixing of
colloids) might be attributed to the changing character of the
fractionation as cr

p is varied. Figure 5(b) plots the probability
distributions P(φs) and P(φl) of the volume fractions of each
species in the coexisting vapor and liquid phases for the vari-
ous cr

p studied. One observes from these distributions that the

volume fraction difference of the large particles φliq
l − φ

vap
l

is very large even for small cr
p approaching the critical point.

This indicates that the vast majority of large particles occupy
the liquid from the outset of phase separation. On increasing
cr

p, this difference grows further until, at the largest cr
p stud-

ied, almost no large particles occupy the vapor. With regard
to the small particles, at low values of cr

p, φliq
s exceeds φvap

s ,
only slightly; i.e., there is initially only weak fractionation
of the small particles upon phase separation; however, as
cr

p increases, φliq
s − φ

vap
s grows strongly, indicating that the

small particles migrate progressively from the vapor to the
liquid. Figure 5(iii) summarises the phase behaviour as deter-
mined by experiment and simulation. Overall, there is good
agreement.

D. Composition inversion

An interesting corollary of the fractionation behavior is
that the concentration of large particles X l in the liquid phase
exhibits an unusual back-bending; i.e., as cr

p increases, a max-
imum of X l occurs [see the phase diagram in the inset of
Fig. 5(i)]. We term this behavior composition inversion. It
appears not to have been recognized previously in studies of
binary mixtures.

The fractionation scenario revealed by the simulations can
explain the differences in the images of Figs. 1(a) and 1(b).
Figure 6(a) shows that for weak quenching and early times
(before sedimentation), the large particles accumulate in the
liquid phase, while the smaller are more homogeneously dis-
tributed. This can be seen by separating the fluorescent chan-
nels to reveal the spatial distributions of the individual species
[Figs. 6(b) and 6(c)]. At larger quench depths, Figs. 6(d)–6(f),
small particles follow the large particles in their spatial varia-
tion in density. In other words, the liquid phase is rich in both
the colloid species.

E. Near-critical fluctuations

At the vapor-liquid critical point, one expects the sys-
tem to display self-similar spatial density fluctuations on all
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FIG. 6. Confocal images shortly after commencement of phase separation. The mixture [left panels (a) and (d)] is separated into the contributions from large
particles [blue, middle panel (b) and (e)] and small particles [orange, right panel (c) and (f)]. [(a)–(c)], top row cp/c∗p = 0.063; [(d)–(f)], bottom row cp/c∗p = 0.069.
Scale bars denote 25 µm.

length scales. By reference to our simulations, the experimen-
tal path enters the coexistence region slightly on the vapor
side of the critical point. The presence of density fluctua-
tions on many length scales, as observed in Fig. 6 for a state
point just inside the coexistence region, is therefore a reflec-
tion of the proximity to criticality. However, fractionation also
affects the near-critical region: Principally, it is the large parti-
cles that partake in these fluctuations–the small ones are more
homogeneously distributed. We have quantified this effect in
both the experiments and the simulations by accumulating the
probability distributions P(φs) and P(φl).

FIG. 7. Simulation results for P(φl) and P(φs) in the one-phase fluid on the
experimental isochore for three values of cp/c∗p. Orange data denote small
particles i = s and blue data denote large particle i = l.

The analysis of volume fraction fluctuations for the indi-
vidual species in the experiments was obtained by plotting a
histogram of the volume fractions obtained via (1), sampled
over square regions of side 7.0σl. This differs from the sim-
ulation analysis that obtains the distribution of the fluctuating
species volume fractions on the scale of the cubic simulation
box. Because of the limited axial resolution of the micro-
scope, we do not define 3D cubes very accurately at this length
scale.

Figure 7 presents our simulation results on the critical
isochore that shows that P(φs) is essentially Gaussian, while

FIG. 8. Probability distributions of volume fraction P(φl) and P(φs) in exper-
iments for two values of cp/c∗p. Orange data denote small particles i = s and blue
data denote large particles i = l. Note that the methodology for the experiments
leads to quantitatively different distributions from simulation.
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for the state closest to the critical point (cp/c∗p = 0.056) (blue
triangles), P(φl) is non-Gaussian, with a distinct tail extending
to higher values of φl, i.e., towards the critical point. Similar
behaviour is found in the experiments (Fig. 8). These results
suggest that the fluctuations in the two species are different in
their sensitivity to deviations from criticality: the large parti-
cles with their stronger interparticle attractions respond first to
approaching criticality, whereas the small particles with their
weaker attractions only do so much closer to the critical point
than we approach here.

IV. CONCLUSIONS

Using particle-resolved studies and bespoke Monte Carlo
simulation, we have investigated the phase behavior of a sim-
ple ternary mixture of two colloidal and one polymer species.
We have recast this ternary system as a binary colloid mixture,
with effective interactions between the particles obtained by
integrating out the polymer degrees of freedom. The current
theoretical understanding of such mixtures is limited. Here,
we see that adding a second colloidal species introduces a
remarkable level of complexity into a well-understood system.
Although a superficial inspection of Fig. 1 suggests that col-
loid liquid-liquid demixing may occur, our simulations show
that this is illusory. Rather, strong fractionation of the large
particles occurs and there is only a vapor-liquid-type sepa-
ration. Thus, our combined experimental and computational
approach resolves the intriguing phase behaviour of this simple
mixture.

We find that the character of this vapor-liquid transition
is much richer than that in the systems with one colloidal
species due to multiple interaction ranges and strengths. At
shallow quenches, the larger particles strongly prefer the liquid
phase, while the smaller ones show only a weak preference—
a phenomenon that can give the appearance of liquid-liquid
demixing. However, for deeper quenches, the small particles
migrate strongly to the liquid, reducing the concentration of
the large particles and leading to composition inversion, i.e.,
a maximum in the concentration of large particles in the liq-
uid phase. For the deepest quenches, a gel forms. Our study
also shows that while criticality is a collective phenomenon
of the mixture, for slightly off-critical conditions, density
fluctuations are dominated by the larger colloids, while the
smaller species behave somewhat as “spectators.” In other
words, criticality and phase separation are driven predomi-
nantly by the larger particles. Given the basic nature of this
system, we expect that this behavior may be found to apply
widely in materials and formulations that are based on mix-
tures of colloids and polymers, such as cosmetics, foods, and
pesticides.
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