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ABSTRACT
A quantitative understanding of the evaporative drying kinetics and nucleation rates of aqueous based aerosol droplets is important for a
wide range of applications, from atmospheric aerosols to industrial processes such as spray drying. Here, we introduce a numerical model for
interpreting measurements of the evaporation rate and phase change of drying free droplets made using a single particle approach. We explore
the evaporation of aqueous sodium chloride and sodium nitrate solution droplets. Although the chloride salt is observed to reproducibly
crystallize at all drying rates, the nitrate salt solution can lose virtually all of its water content without crystallizing. The latter phenomenon has
implications for our understanding of the competition between the drying rate and nucleation kinetics in these two systems. The nucleation
model is used in combination with the measurements of crystallization events to infer nucleation rates at varying equilibrium state points,
showing that classical nucleation theory provides a good description of the crystallization of the chloride salt but not the nitrate salt solution
droplets. The reasons for this difference are considered.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5139106., s

I. INTRODUCTION

Understanding the evaporative drying and crystallization of
aerosol droplets is important for a broad range of industrial appli-
cations, most notably in spray-drying,1 and for predicting the opti-
cal and physical properties of atmospheric aerosols.2 The micro-
physics of the drying process also likely has an impact on the via-
bility of bacteria in aerosols.3 In spray drying, the goal is to con-
trol the distribution of sizes, morphology, and phase of the final
droplets, which are very sensitive to processing conditions such as
solvent,4,5 temperature,6–8 pH,9,10 and additional co-excipients.11–13

Tailoring crystallization is particularly important because crystal
and amorphous states have fundamentally different properties: crys-
talline droplets are typically more stable and suitable for product
storage,14,15 whereas amorphous droplets are more easily re-
dissolved into an aqueous solution droplet which is desirable
for inhalable powders for respiratory drug delivery.16,17 Typically,

investigations of crystal nucleation rates can inform the design of
spray-drying conditions to achieve a desired final state.

In atmospheric aerosols, the radiative forcing of atmospheric
aerosols is strongly influenced by their optical properties.18,19 The
solute concentration and physical state (i.e., whether it is crys-
talline or amorphous) can have an important effect on climate
predictions. In addition, the partitioning of chemical components
between the gas and condensed phases is strongly dependent on
the phase state of the ambient particles. This has implications
for the long range transport of pollutants, the health impacts of
ambient aerosol, and the ice nucleation efficiencies of atmospheric
particles.2

In this work, we will investigate drying and crystal nucle-
ation of free aerosol droplets by combining experiments and a
numerical model for free aerosol droplets. The experiments are
described in Sec. II, and we report comparisons with a diffu-
sional model of droplet evolution in Sec. III. We find that classical
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nucleation theory (CNT) accurately predicts the crystallization times
for NaCl aerosols, but not for NaNO3, in Sec. IV. For NaNO3, we
report nucleation rates with non-monotonic behavior with increas-
ing solute concentration.

II. EXPERIMENTS
The kinetics of drying NaCl and NaNO3 droplets were mea-

sured using the Comparative-Kinetics Electrodynamic Balance (CK-
EDB). The CK-EDB instrument has been detailed in the previous
work,20 so we will only describe it briefly here. Droplets of known
concentration and radius (in the range 20–25 μm) are produced by a
droplet-on-demand generator (MicroFab) and injected into the CK-
EDB instrument. Upon generation, the droplets are charged (<10
fC through an ion imbalance) with an induction electrode such that
they become trapped within the center of the electrodynamic field,
produced by the application of an AC field between two sets of con-
centric cylindrical electrodes. An additional DC field is applied to the
lower set of electrodes to counteract gravity and drag forces acting
on the droplet. A circulating current of the ethylene glycol coolant
across the electrodes controls the chamber temperature T∞ in the
range 273–323 K.

To determine the size and physical state of the droplet, it is illu-
minated with a 532 nm continuous-wave laser. The resulting elastic
light scattering pattern is recorded by using a CCD camera placed
at 45○ to the beam over an angular range of ∼24○. For isotropic
droplets in a liquid or dried amorphous state, the droplet radius R
determines the angular separation between the fringes in the pattern
Δθ. Assuming the geometric optics approximation of Mie theory,
this relationship is given by

R = λ
Δθ

⎛
⎜
⎝

cos(θ
2
) +

n sin ( θ2)√
1 + n2 − 2n cos ( θ2)

⎞
⎟
⎠

−1

,

where λ is the laser wavelength, θ is the central viewing angle,
and n is the droplet refractive index. This approximation scheme
allows the estimation of the droplet radius within an accuracy of
±100 nm. This method fails when crystallization occurs breaking
isotropy, and the scattering pattern dramatically changes; this fea-
ture allows the time of crystallization to be within ∼10 ms. Nucle-
ation and growth occur on such a short time scale that it is not
possible to obtain information from the experiments on where inside
the droplet the nucleation occurs or how many initial nucleation
sites are there; we can only determine that the droplet has nucleated
crystals.

The instrument features two gas flows for humidified and dry
nitrogen applied to the droplet at a rate of 0.03 m s−1. Controlling
the ratio of these two flows through a mass-flow controller (MKS
instruments) sets the relative humidity (RH) inside the CK-EDB
chamber. Liquid aqueous NaCl and aqueous NaNO3 droplets (20%
solute concentration by weight) were evaporated into dry conditions
at 20 ○C. In all experiments, high-performance liquid chromatog-
raphy (HPLC)-grade water, BioXtra ≥99.5% NaCl (Sigma-Aldrich),
and analytic grade NaNO3 (Fisher-Scientific) were used to prevent
particle impurities that may act as heterogeneous nuclei. Crystal-
lization of multiple NaCl droplets occurred reproducibly 1 s after
droplet generation,21 whereas NaNO3 droplets showed stochastic

behavior with a fraction of droplets not crystallizing over the time
scale of the experiment (droplets were typically trapped for 10 s).
The stochastic behavior persists when the experiment was repeated
for the same NaNO3 droplet over a cycle of repeatedly lowering and
raising the RH (described in more detail elsewhere22), ruling out
impurity-driven heterogeneous nucleation.

III. MODEL FOR A DRYING DROPLET
A. Overview and notation

In order to obtain nucleation rates, we require the time evo-
lution of the droplet’s concentration profile over its drying his-
tory and a phenomenological model for nucleation rates based on
concentration. To determine the concentration profile trajectory
for a drying droplet, we have to consider the relative motion of
solute and solvent species inside the droplet and that of various
species in the surrounding vapor phase, as well as the evaporation
of the solvent across the phase boundary. Our approximations will
reduce this to a moving boundary problem with solely diffusional
mixing.

Prior to crystallization, a drying droplet will be approximately
spherical, so we consider a phase boundary at radius R(t) evolving
in time t. Writing the distance from the center of the droplet as r,
the phase boundary separates the liquid phase inside r ∈ [0, R(t)]
from the vapor phase outside r ∈ [R(t),∞]. The droplet is sketched
in Fig. 1. In our earlier work,21 we developed a numerical model
for droplet drying, which imposes the entire trajectory of R(t) as an
input; however, it is difficult to extend this route to long trajectories
in a self-consistent way. Here, we improve upon our earlier model
by only imposing the initial values of R and its time-derivative,

FIG. 1. A drying droplet solution of radius r = R(t) surrounded by a gas of temper-
ature T∞ and relative humidity RH. Evaporation of the solvent (water) causes the
droplet to shrink and surface enrichment of solute concentration ρ(s ) together with
evaporative cooling T < T∞.
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providing an important step toward a unique and entirely first-
principles model that captures the evaporation kinetics (including
heat and mass transfer) along with the nucleation kinetics and phase
change.

We label the solute and (ambient) gas components as s and g,
respectively, and the evaporating solvent component as f for fluid as
it exists in both the liquid and gas phases. The density is ρ = ∑iρ(i),
where the (mass) concentration of each component is ρ(i) for i ∈ (f, s)
in the droplet and i ∈ (f, g) in the gas. A useful auxiliary variable is
the mass fraction of each component, i.e.,

Y(i) = ρ(i)

ρ
. (1)

As the liquid phase is a binary mixture, we only need to solve for one
component; we choose to solve for the solute mass fraction Y (s).

The thermal conductivity of liquids is generally much larger
than the mass diffusivity, so to leading order, we can treat tem-
perature T as homogeneous throughout the droplet. This approxi-
mation neglects potential conduction forces driven by temperature
gradients. The droplet temperature will be lower than the ambient
temperature T∞ because vaporization carries a latent heat, and we
determine it self-consistently from the vaporization rate. Later, we
use T in predicting nucleation rates. However, as a simplification,
we do not incorporate this temperature into the dynamics them-
selves through modified diffusion coefficients. This approximation is
reasonable because the fractional temperature change is always less
than 5%.

B. Evolution of the concentration profile
In the absence of any chemical reactions, the continuity equa-

tion for each species component reads

∂ρ(i)

∂t
+∇ ⋅ (ρ(i)v(i)) = 0, i ∈ {f , s}, (2)

where v(i) is the velocity of species i, or in terms of relative flows,

∂ρ(i)

∂t
+∇ ⋅ (ρ(i)v) +∇ ⋅ j(i) = 0, i ∈ {f , s}, (3)

where the mass-averaged fluid velocity is v = ∑iY (i)v(i) and the rel-
ative mass flux is j(i) = ρ(i)(v(i) − v). Any advective/convective flows
will typically be contained in v, while diffusive effects are captured
by j(i).

Volume additivity holds to a good approximation,23 i.e., the
density and concentrations are related by

1
ρ
= Y(s)

ρ(s)0

+
Y( f )

ρ( f )
0

, (4)

where ρ(i)0 is the liquid-phase density of the pure substance; as
no stable amorphous phases of NaCl or NaNO3 are known, we
approximate ρ(s)0 by the density in the crystal phase.

By considering mass conservation, one obtains

∇ ⋅ v = 1
ρ2

∂ρ
∂Y(s)

∇ ⋅ j(s),

so assuming volume additivity (4), we can define the mass difference
parameter as

Λ = 1
ρ2

∂ρ
∂Y(s)

= 1

ρ( f )
0

− 1

ρ(s)0

, (5)

giving v = Λj(s). This simplifies the advective term in the continuity
equation (3) leading to

∂ρ(s)

∂t
+∇ ⋅ ((1 + Λρ(s)) j(s)) = 0. (6)

For the relative mass flux, we assume Fick’s law for diffusion,

j(i) = −Deffρ∇Y(i), (7)

where Deff is an effective binary diffusion constant for the relative
motion. Inserting (7) into (6) and using the product rule gives

∇ρ(s) = (1 + Λρ(s))ρ∇Y(s).

Finally, this gives the standard diffusion equation

∂ρ(s)

∂t
= ∇ ⋅ (Deff∇ρ

(s)), (8)

where the advective forces have vanished providing a convenient
form for numerical implementation.

Bulk viscosity measurements are unavailable for highly concen-
trated solutions because of the propensity for the salts to crystallize,
so we extrapolate the available experimental data24,25 assuming the
following Arrhenius-like form:

logη = log (η(ρ(s) = 0)) + αρ(s), (9)

where α is a fitting parameter. The fits are shown in Fig. 2(a). We
model the diffusion constant by assuming the following Stokes–
Einstein form:

Deff =
kBT
6πηa

, (10)

where a is the Stokes radius and η is the dynamic viscosity. To
determine a, we calibrated direct measurements of diffusion from
molecular dynamics simulations for NaCl26 and experiments for
NaNO3

27 against the viscosity fits. We obtain a = 0.169 for NaCl and
a = 0.167 nm for NaNO3. The resulting diffusion coefficients enter-
ing the droplet evolution equation are shown in Fig. 2(b).

We employ two simplifications in our calculations concern-
ing the effects of droplet temperature. First, our volume additiv-
ity assumption (4) makes the density temperature independent;
this neglects conduction forces caused by temperature gradients
and results in more heterogeneous droplets. Second, we approxi-
mate T ∼ T∞ in the Stokes–Einstein relation (10). This approxi-
mation neglects evaporative cooling, which would slow diffusion,
and so overestimates the diffusion constant and will result in more
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FIG. 2. Numerical fits of binary diffusion coefficients for aqueous ionic solutions.
(a) Fits of viscosity to an Arrhenius-like form (9) to experimental values.24,25

(b) Diffusion coefficient from the viscosity fits assuming a Stokes–Einstein form
(10), where the Stokes radius is obtained by calibration with direct measurements
of diffusion at 27 ○C for NaCl26 and 25 ○C for NaNO3.27 (c) Solvent activity af

from a numerical model28 compared with experimental data.29,30 The extrapola-
tions are taken up until the maximum mass fraction is explored by the numerical
model. The purple-dashed horizontal line shows the diffusion constant of pure H2O
for reference to be distinguished from the binary diffusion constants in the limit
Y (s ) → 0. The dotted lines indicate the saturation thresholds at 20 ○C.

heterogeneous droplets. It is unclear a priori which of these opposing
effects dominates. Note that later we model the droplet temperature
T explicitly for treating solvent evaporation and nucleation rates,
but we have not incorporated this temperature into the diffusion
constant.

C. Droplet boundary conditions
Initially, the droplets are prepared as equilibrium solutions, so

they are well-mixed and we can assume a uniform initial concen-
tration profile. At t = 0, a droplet is produced which begins to lose
the solvent through evaporation due to the low RH of the CK-EDB.
The evaporation rate determines the boundary conditions for the
diffusion equation (8).

Integrating the species continuity equation (2) gives the total
mass flow into the droplet (of each species) as

dm(i)

dt
= ∫

V(t)

∂ρ(i)

∂t
dV + ∫

∂V(t)
ρ(i) v∂V(t) ⋅ dS, (11)

where V(t) is the volume of the droplet at time t and v∂V (t ) is the
velocity of the boundary, and the vectorial surface element dS points
in the direction of the outer normal vector. We assume that the
solute does not leave the droplet, so all mass flow at the boundary
must be due to the solvent. Inserting the diffusion equation (8) into
(11) and applying Stokes’ theorem gives

dm(s)

dt
= ∫

∂V(t)
(ρ(i)v∂V(t) + Deff∇ρ

(s)) ⋅ dS = 0. (12)

For spherical droplets, this gives the following boundary condition:

∂ρ(s)

∂r
∣
r=R(t)

= − ρ(s)

Deff(R)
dR
dt

. (13)

Assuming volume additivity (4), we can determine the radial evolu-
tion from mass conservation as

dR
dt
= 1

4πR2ρ( f )
0

dm( f )

dt
, (14)

so we need a model for the evaporation rate dm( f)
dt to close this system

of equations.
We assume the classical result for quasistatic vaporization

as31,32

dm( f )

dt
= 4πρvDvR ln (1 + B), (15)

where ρv and Dv are the density and diffusion constant in the vapor
phase, and the Spalding number is defined as

B =
lim

r→∞
Y( f )(r) − Y( f )(R+)

1 − lim
r→∞

Y( f )(r)
, (16)

with Y (f )(R+) indicating that it is the mass fraction of the solvent
component on the vapor side of the boundary. For the phase bound-
ary, it is convenient to work with mole fraction instead of Y (f )(R+)
because it can be related to partial pressure pf through Dalton’s law
for ideal gases, i.e.,

X( f )(R+) =
pf (R+)

p
,

with p as the total pressure. This can be converted back into mass
fraction for use in (16) through

Y( f ) =
Mf X( f )

Mf X( f ) + Mg(1 − X( f )) , (17)

where Mi are the molar masses of each species. We can obtain the
partial pressure from the solvent concentration at the boundary
from the solvent activity, defined through

af (R−) ∶= af (Y( f )(R−)) =
pf (R+)
p∗eq(T)

= p X( f )(R+)
p∗eq(T)

,

where p∗eq is the equilibrium vapor pressure of the evaporating com-
ponent. Figure 2(c) shows af as a function of mass fraction, obtained
through a numerical method that treats the non-ideality of the solu-
tion.28 The Clausius–Clapeyron relation connects the vapor pressure
at the surface to the ambient conditions via

p∗eq(T) = p∗eq(T∞) exp( L
Rg

T − T∞
TT∞

),

where L is the specific latent heat of vaporization and Rg is the
molar gas constant. Combining the above expressions gives the mole
fraction above the surface as
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X( f )(R+) =
af (R−) p∗eq(T∞)

p
exp( L

Rg

T − T∞
TT∞

), (18)

which requires an equation for droplet temperature T for closure.
As a simplification, we ignored curvature effects on p∗eq(T) emerg-
ing from interface energy,33 which should be small for these droplets
with the radius of order ∼10 μm.

Finally, assuming a steady state heat flux through the boundary,
and neglecting the radiative heat transfer and the droplet heat capac-
ity, gives the temperature difference between the droplet surface and
the ambient temperature as30,34

T − T∞ =
L

4πRK
dm( f )

dt
, (19)

where K is the thermal conductivity of the vapor phase, closing the
equations at the phase boundary. Together, Eqs. (15)–(19) form a
complete set of equations that can be solved (numerically) to obtain
the evaporation rate.

Typically, the classical vaporization rate equation (15) requires
semi-empirical corrections to treat more complex mass and heat
transport phenomena at the boundary. In order to better match
the experiments, we introduce the empirical factor C to correct the
vaporization rate giving

dm( f )

dt
= 4πC ρvDvR ln (1 + B). (20)

We determine C from the initial value of dR
dt in the experiments.

At constant vaporization rate, the solution to the radial evolution
Eq. (14) yields

R(t)2 = R(t = 0)2 + (2R
dR
dt
)

t=0
t (21)

valid at short times. We iteratively solve Eqs. (14) and (16)–(20) with
varying C until a value is obtained, which produces a dR

dt consistent
with the experimental fit. The empirical factor normally introduced
to (20) is the Sherwood number Sh = 2C, a dimensionless number
correcting for more complex mass-transfer phenomenology such
as convection. Ordinarily, Sh is bounded from below by 2, so we
would expect that C ≥ 1; however, we generically find numerical
values of C < 1 in order to match the experiments (explicit values
given in the Appendix); our numerical factor C is thus not physi-
cally justified and must contain corrections for deficiencies in our
model.

D. Implementation and results
We discretize the solute concentration profile ρ(s)(r) onto a uni-

formly spaced grid over r ∈ [0, R(t)]. To handle the moving bound-
ary, it is convenient to work in the rescaled coordinate r̃ = r

R(t)
∈ [0, 1]. For the discretization, we define the vector ρ ∶= {ρ0, ρ1, ⋯,
ρN }, where ρi ∶= ρ(s)(̃r = i

N ). The complete history of the evolution
of the droplet then involves both ρ and R variables. In addition, it is
convenient to introduce Ṙ as its own variable so that the final Jaco-
bian for the diffusion equation (8) has tridiagonal form. This gives
us the evolving droplet state variable x = (ρ, R, Ṙ).

To integrate a time step Δt, we use the Crank–Nicolson35

method, where

x(t + Δt) − x(t)
Δt

= 1
2
( ∂x
∂t
∣
t+Δt

+
∂x
∂t
∣
t
) + O(Δt2).

As the evolution equations are nonlinear, this must be solved itera-
tively to find a self-consistent solution. Introducing the kth approx-
imation for x(t + Δt) as x(k)(t + Δt), we write the next term in the
sequence as x(k+1) = x(k) + δx(k) and we obtain

x(k)n+1 + δx(k)n+1 − xn

Δt
= 1

2
⎛
⎝
∂(x(k)n+1 + δx(k)n+1)

∂t
+
∂xn

∂t
⎞
⎠

,

using the subscript n as shorthand for the time. This is a matrix equa-
tion that can be inverted for δx(k). Convergence is deemed to occur
where δx(k) falls below some threshold value. The main advantage
of this scheme over more simple schemes (e.g., the forward Euler
method where just the initial ∂xn

∂t is taken) is that the error is of order
Δt2 ensuring rapid convergence with small time steps.

We integrated initially homogeneous droplets of NaCl and
NaNO3 for various ambient conditions. The resulting radius is
illustrated for NaNO3 in Fig. 3; we see that at short times there
is excellent agreement because of the introduction of the correct-
ing factor C in (20). However, at longer times, the evaporation
rate is underestimated. This is likely due to limitations of the sim-
plified evaporation model (20) or because the neglect of conduc-
tive forces causes the evaporation to become diffusion-limited at
long-times when the surface is highly enriched. We achieve good
agreement with experiments for NaCl across their entire time evo-
lution [Fig. 5(b)] because these droplets crystallize before the slow-
down of the evaporation rate. To make this analysis more quanti-
tative, we show the errors in the droplet radius in Fig. 4; we find

FIG. 3. Evolution of NaNO3 aerosol droplet radii from the numerical model (dashed
lines) and experiments shown by points with 1% transparency, showing reasonable
agreement at short times until longer times when the evaporation rate is underesti-
mated. (a) Varying relative humidity while ambient temperature is kept fixed, for an
initial solute mass fraction of Y (s ) = 0.125. (b) Varying ambient temperature while
relative humidity is kept fixed, for an initial solute mass fraction of Y (s ) = 0.2.
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FIG. 4. Time evolution of simulated droplet radius error by comparison with exper-
iments. We collate data from multiple experiments at each state point; the median
across the datasets (solid lines) is shown along with a shaded region indicating
agreement up to the 10/90th percentiles (dashed lines). (a) NaCl solution droplets
with ambient temperature T∞ = 20 ○C under dry conditions. (b) NaNO3 solution
droplets with initial solute mass fraction of Y (s ) = 0.125 and ambient tempera-
ture T∞ = 20 ○C. (c) NaNO3 solution droplets with initial solute mass fraction of
Y (s ) = 0.2 under dry conditions.

that the error is always within 10% in our model throughout the
evolution.

IV. NUCLEATION MODEL
A. Droplet nucleation rates

Denoting the rate of solute nucleation per unit volume as J, the
continuum limit nucleation rate for the entire droplet is

W = ∫
V

JdV = 4π∫
R

0
J(r) r2dr. (22)

Both the local J and total rates W contain an implicit time depen-
dence because of their dependency on the evolving variables R,
ρ(s), and T. For homogeneous nucleation, J depends solely on the
state variables ρ(s) and T. Nucleation rates are typically strongly
concentration dependent,36–38 so we anticipate nucleation to occur
at the boundary r = R(t), where the solute concentration is the
greatest. Allowing for heterogeneous nucleation, J could acquire an
additional dependence on the inhomogeneities in the system; as
the experiments were performed with high-purity precursor com-
pounds to mitigate the effect of chemical impurities, we expect the
main potential site for heterogeneous nucleation to be the liquid–air
interface. Whichever nucleation mechanism dominates, we expect it
to occur at the boundary, so the total rate (22) reduces to

W ∼ 4πR2Jξ, (23)

where J is now evaluated at the boundary, and we introduced ξ as the
thickness of the typical shell region over which nucleation occurs.

We will give nucleation rates in terms of Jξ, assuming a value
ξ = 1 μm to set the absolute scale of the rates predicted by theory
(Sec. IV B) to most closely match the experiments.

We can relate the nucleation rates to the experimentally
observed events by assuming Poisson statistics. Poisson statistics
have previously been applied to model the nucleation kinetics in
small volumes of aqueous solutions, for example, in microfluidic
chambers39,40 and levitated droplets.41 We define the survival prob-
ability as

pliq(t) ∶= Prob[no nucleation by time t].

The mean number of nucleation events in the time interval Δt is
simply WΔt, giving the probability that there is no nucleation event
after a time Δt as

pliq(t + Δt) = pliq(t)e−WΔt .

Taking the infinitesimal limit and using the fact that droplets are
prepared in the liquid state giving the initial condition pliq(t = 0) = 1
yields

pliq(t) = exp(−∫
t

0
W dt). (24)

As we have already determined the droplet’s radius and concentra-
tion profile from the evolution equations described in Sec. III, we are
left needing a model for the nucleation rate per unit volume J before
we can determine pliq.

B. Nucleation models
For nucleation processes with a single barrier, the rate per unit

volume goes as

J = κ exp(−ΔG∗

kBT
), (25)

where κ is a kinetic prefactor and ΔG∗ is thermodynamic bar-
rier for the process. A widely used approximation for the kinetic
prefactor is38

κ = nI jZ, (26)

where nI is the number density of potential nucleation sites, j is the
rate of aggregation to these sites, and Z is the Zeldovich factor. These
last two quantities are typically further approximated as38

j ∼ nDeffR
∗, (27a)

Z ∼ (N∗)−
2
3 , (27b)

where n is the solute number density, N∗ is the excess number of
molecules in the critical nucleus, and R∗ is its radius. The barrier
ΔG∗ depends on the specific nucleation mechanism.

For homogeneous nucleation, the sites of nucleation are simply
the solute molecules themselves, so nI = n. The driving force for the
transition is the chemical potential change Δμ from the formation
of the new phase. In classical nucleation theory (CNT), the inter-
face energy between the crystal and liquid is imagined as the main
obstacle to nucleation. Combining the two contributions leads to the
barrier
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ΔG = γA − ∣Δμ∣ncV , (28)

where γ is the liquid-crystal interface energy, nc is the crystal number
density, and A and V are the surface areas and volumes of the nucle-
ated region, respectively. The thermodynamic barrier to nucleation
is then the maximum of this formula; assuming a perfectly spherical
crystal seed, this gives

ΔG∗ = 4
3
π(R∗)2γ, (29)

(R∗) = 2γ
nc∣Δμ∣

. (30)

The chemical potential expressed in terms of mean ionic activity is36

Δμ
kBT
= 2 ln

⎛
⎝

a±
a0±

ρ(s)

ρ(s)0

⎞
⎠

, (31)

where a± is the mean ionic activity coefficient, a0 is its value at
saturation, and ρ(s)0 is the threshold saturation concentration.

Temperature influences the nucleation rate primarily through
the denominator in the exponent of (25). Physically, thermal states
are more easily sampled at higher temperatures, so the nucleation
rate increases with temperature, a phenomenon that allows for long-
lived supercooled states.42 We thus find that CNT predicts homo-
geneous nucleation rates, which increase monotonically in both
concentration and temperature.

In Fig. 6, we show the predicted rates for NaCl with γ
= 0.08 N m−1 from the literature36 and NaNO3 with different
trial values of interface energy to test correspondence with the
experimental data; we find that the nucleation rates are essentially
described by a step function of infinite magnitude over the time scale
of the experiments. This is consistent with observations for NaCl, so
we are able to accurately predict the time of nucleation in the experi-
ments shown in Fig. 5(a). By contrast, the experiments show that the
final survival probability for NaNO3 droplets is often in the range
0 < pliq < 1, which is not consistent with nucleation rates being char-
acterized by a step function, which we will make more quantitative in
Sec. IV C.

C. Inferring nucleation rates from experiments
We can try to determine the nucleation rates directly from

experiments by observing the stochastic nucleation behavior over
repeat trajectories and comparing these against the numerical
model. These experiments give us the true survival probabilities pliq
of which we can determine the droplet nucleation rate W exactly
by numerical differentiation. Combined with the numerical model,
which gives us the precise state of the droplet, we can infer Jξ from
the inversion of the rate formula (23) under the assumption that
nucleation is boundary-dominated.

Differentiation of the survival probability (24) yields

ṗliq = −Wpliq; (32)

combining this with our assumption that nucleation occurs near the
boundary (23) allows us to write the nucleation rate as

Jξ = − 1
4πR2

ṗliq

pliq
, (33)

FIG. 5. Evolution of NaCl droplets in dry air RH = 0% from experiments (points) and
the numerical model (lines) for different ambient temperatures and initial solute
mass fractions. Each state point involves 10–12 droplets, and each point corre-
sponds to a single nucleation event. (a) Probability that a droplet survives without
nucleating, assuming the liquid–crystal interface energy γ = 0.08 N m−136 for the
numerical model. (b) Evolution of droplet radius showing good treatment of solvent
evaporation rates.

which we can determine from the experimentally observed pliq tra-
jectory. The derivative of pliq can be obtained through fitting. The
survival probabilities decay monotonically as a generalized step
function, so we fit the experimental trajectories with the following
Fermi–Dirac form:

pliq(t) − lim
t→∞

pliq(t) =
1 − limt→∞ pliq(t)
exp [ϵ(t − ts)] + 1

, (34)

where ts is the time at which saturation is reached ρ(s)(R) = ρ(s)0 ,
and introducing the fitting function,

ϵ(t) = {at + bt2 − c/t, t > 0
−∞, t < 0,

subject to the constraint that the fitting parameters a, b, c ∈ [0,∞] to
ensure that pliq decreases monotonically from pliq(t = 0) = 1.

In Fig. 7(a), we show the survival probabilities for the exper-
iments with NaNO3 droplets and we perform the inversion proce-
dure described above to infer bulk nucleation rates in Fig. 7(b). The
resulting nucleation rates show non-monotonic behavior, increasing
to a maximum before decreasing to essentially zero over the duration
of the experiment. This results in a finite final survival probabil-
ity pliq > 0 and starkly contrasts with the picture captured by CNT
and realized in NaCl droplets [Fig. 5(a)], where pliq would remain
close to unity for most of the experiment before sharply dropping
to zero as all the droplets crystallize reproducibly. Figures 6 and
7(b) are shown with identical ranges to highlight this contrasting
behavior.

Clearly, the nucleation kinetics in drying NaNO3 aerosols are
more complicated than the simple homogeneous nucleation sce-
nario we assumed in Sec. IV B. One kinetic effect we have poorly
estimated is the slowing down of diffusion occurring at very high
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FIG. 6. Shell nucleation rate Jξ (μm−2 s−1) predicted by classical nucleation the-
ory for aqueous NaNO3 and NaCl solutions at different state points. The dark
purple and bright yellow regions show where nucleation is essentially impossible
or instantaneous on the experimental time scale. Different values of solid–liquid
interface energy γ (given in N m−1) do not result in a different qualitative pic-
ture: a nucleation rate which monotonically increases with supersaturation and
temperature.

concentrations. We have assumed that the Stokes–Einstein rela-
tion holds in this highly saturated regime, which may not be a
valid assumption; however, more accurate knowledge of the diffu-
sion constant would only shift the nucleation rates by an order of
magnitude, which is insignificant compared to the dramatic (and

FIG. 7. State points explored by experiments with drying NaNO3–H2O aerosol
droplets as determined from our numerical model for nine datasets for droplet
evaporation under different initial conditions. Each dataset contains data from over
50 experiments. (a) Survival probability in the experimental trajectories (i.e., the
probability that a droplet has not crystallized), with the state-point inferred from
the model. (b) Shell nucleation rates Jξ (μm−2 s−1) inferred from trajectories
assuming boundary-dominated nucleation (23), showing non-monotonic behav-
ior in increased concentration and temperature in contrast with the predictions of
classical nucleation theory in Fig. 6.

monotonic) kinetic changes emerging from CNT, as shown in Fig. 6.
For this reason, nucleation in drying NaNO3 aerosols must occur
through a qualitatively different kinetics. More exotic nucleation
processes involve, e.g., more sophisticated core geometries or path-
ways featuring multiple steps.38 It is possible for nucleation to occur
through an intermediate step though NaNO3 does not precipitate as
a hydrate, so this would require a different intermediary structure.
Such processes may involve multiple reaction coordinates, whereas
classical nucleation theory has a single one.

V. CONCLUSIONS
We have developed a numerical model based on a diffusion

equation with an extrapolation of the diffusion constant to high con-
centrations assuming the Stokes–Einstein relation. As an input, the
model takes only the initial droplet state, and the resulting evolution
conforms well to the experimental trajectories. Assuming bound-
ary dominated nucleation, we are able to predict nucleation rates
inside the droplet from CNT, and by inverting this process, we can
infer the actual observed nucleation rates at varying state points.
The nucleation rates are highly dependent on the rate of droplet
drying, as this determines the state points which are ultimately
explored.

We found that CNT works well for predicting crystal nucle-
ation in NaCl but not NaNO3 aerosols. In both cases, CNT pre-
dicts nucleation essentially after a threshold surface saturation is
reached so that the predicted probability of crystallization in time
is a step function of unit magnitude. This emerges from the fact
that nucleation rates predicted by CNT monotonically increase in
concentration and temperature. In particular, the change in nucle-
ation rate from increased concentration is so dramatic that the
behavior of CNT is essentially unchanged by small adjustments to
the model parameters. However, the experiments show that many
NaNO3 aerosols do not crystallize, even where CNT would predict
that this is practically certain; as such, whether an individual droplet
will crystallize is stochastic.

CNT is a model for homogeneous nucleation, so it is possible
that it fails because crystallization occurs for NaNO3 through hetero-
geneous nucleation. The same stochastic phenomena are observed
when repeating the experiments with the same droplet on a cycle
of decreasing and increasing the RH to dry and then re-condense
the droplet; this rules out heterogeneous nucleation through impu-
rities, as the chemical makeup is the same in each cycle, yet the phe-
nomenon persists. This leaves the gas–liquid phase boundary itself
as a site for heterogeneous nucleation.

It is highly likely that the model overestimates the surface
enrichment because at long times the simulated evaporation rates
become limited by solute diffusion at the boundary. The diffusion
limit would persist even if more sophisticated transport phenom-
ena were introduced to the evaporation model. Surface enrich-
ment is overestimated because we have neglected the effect of tem-
perature gradients inside the droplet and because we have used
an extrapolation of low concentration diffusion data, which likely
underestimates diffusion at high concentrations. Temperature gra-
dients create inward convection currents reducing surface enrich-
ment. The rapid increase in viscosity with salt concentration in our
model leads to a feedback loop where diffusion becomes increasingly
difficult as the surface is enriched. Correcting for these effects, we
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expect the surface concentrations explored by the experiments to
increase to a maximum before decreasing, which could explain non-
monotonicity. However, this can only partially explain the observed
behavior because CNT is extremely sensitive to concentration. Fun-
damentally, we require a deeper understanding of the nucleation
kinetics at ultrahigh supersaturations in order to correctly model the
crystallization of droplet drying.

This work is important in showing that the nucleation rate of
nitrate aerosol is not only influenced by the level of supersatura-
tion but also by the drying kinetics itself because of an interplay
between the inhomogeneity of the concentration profile and droplet
temperature. This is important for climate predictions where an
understanding of the phase of atmospheric aerosol is crucial and also
valuable for spray-drying models where control over the resulting
phase could be enabled by tuning the various drying parameters.
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APPENDIX: EXPLICIT VALUES OF EMPIRICAL
CORRECTION

Here, we give the numerical values of the empirical corrections
C used in (20) to match the models to the experiments at short times,

TABLE I. Empirical fitting parameter used in numerical calculations at each state
point.

Y (s)(t = 0) T (○C) RH (%) C

NaCl aerosol

0.02 20 0.00 0.762
0.02 45 0.00 0.463
0.20 45 0.00 0.326
0.20 20 0.00 0.608

NaNO3 aerosol

0.125 20 0.15 0.825
0.125 20 0.20 0.780
0.125 20 0.25 0.793
0.125 20 0.30 0.735
0.125 20 0.40 0.654
0.200 20 0.00 0.651
0.200 10.8 0.00 0.693
0.200 4.8 0.00 0.603
0.200 7.4 0.00 0.714
0.011 11.45 0.00 0.792
0.019 11.45 0.00 0.824
0.052 11.45 0.00 0.854
0.200 11.45 0.00 0.853
0.350 11.45 0.00 0.820

for each state point. Values of C < 1 indicate that our evaporation
model is nonphysical (Table I).
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