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Abstract We explore crystallisation and polymorph selection in active Brownian particles with numerical
simulation. In agreement with previous work (Wysocki et al. in Europhys Lett 105:48004, 2014), we find
that crystallisation is suppressed by activity and occurs at higher densities with increasing Péclet number
(Pe). While the nucleation rate decreases with increasing activity, the crystal growth rate increases due
to the accelerated dynamics in the melt. As a result of this competition, we observe the transition from a
nucleation and growth regime at high Pe to “spinodal nucleation” at low Pe. Unlike the case of passive
hard spheres, where preference for FCC over HCP polymorphs is weak, activity causes the annealing of
HCP stacking faults, thus strongly favouring the FCC symmetry at high Pe. When freezing occurs more
slowly, in the nucleation and growth regime, this tendency is much reduced and we see a trend towards
the passive case of little preference for either polymorph.

1 Introduction

The field of Active Matter may be said to consider
systems of organisms or artificial bodies that consume
energy for self-propulsion [1]. On mesoscopic length
scales (nm to µm), it is concerned with describing the
dynamics of biological microswimmers [2] such as bacte-
ria and motile cells [3]. The dynamics of active matter
in unbounded, homogeneous, and low-Reynolds num-
ber environments are well described by active Brownian
motion and run and tumble dynamics [4]. Observation
of matter behaving according to this description has
led to the discovery of unique dynamical phenomena
such as motility-induced phase separation (MIPS) [5],
where bodies packed at densities greater than a criti-
cal volume fraction and with sufficient propulsion will
separate into a dense phase and a dilute phase in the
absence of attraction [6].

Key to the development of a better theoretical
understanding is to use simple models of active par-
ticles which capture some of the complex behaviour
observed experimentally, for example collective motion
and demixing [5,7–16]. In this context, simple model
systems, such as active colloids, play an important role
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and these may be modelled with the use of active Brow-
nian particles (ABPs) [6].

Besides being the source of novel phenomena, activ-
ity can also fundamentally alter the nature of behaviour
already observed in passive systems, such as crystallisa-
tion. Although certain aspects of crystallisation in pas-
sive colloidal systems, such as the nucleation rate at low
supersaturation, are still poorly understood [17–27], at
higher supersaturation, where crystallisation occurs on
the timescales accessible to brute force computer sim-
ulations, very good agreement is found between exper-
iment and simulation [28]. At higher colloidal volume
fraction still, the barrier to nucleation falls so much
that rather than conventional nucleation-and-growth,
the system undergoes “spinodal nucleation”, where, rel-
ative to the intrinsic structural relaxation time τα, the
timescale for crystallisation falls dramatically such that
it is well below the relaxation time [28–32].

Another property of crystallising systems is polymor-
phism, i.e. the ability of a material to nucleate different
crystalline phases, and whose understanding is funda-
mental to predict the structure of the growing nuclei.
So far, our understanding of polymorphism is based
on equilibrium thermodynamic principles, such as the
Ostwald step rule of phases [33], stating that the first
solid formed is not the thermodynamically most sta-
ble, but the state nearest in free energy to the original
state. For hard spheres, which may be said to constitute
the passive equivalent of the ABP system that we con-
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sider, two different crystalline polytypes are observed
during nucleation: either face-centered-cubic (FCC) or
hexagonal-close-packed (HCP), and the difference in all
thermodynamic relevant quantities (such as free-energy,
nucleation barrier, and stacking-free energy) between
the competing polymorph are negligibly small (within
10−3 kBT per particle for all cases) [34,35]. Thermo-
dynamics thus dictate that the early stages of nucle-
ation should produce an almost equal amount of FCC
and HCP for hard-spheres. We will show that activity
can significantly alter this result. Studying the effect of
activity is thus an important step towards understand-
ing polymorphism in out-of-equilibrium situations.

The effect of activity upon crystallisation has been
studied in the context of the effect on the state dia-
gram [36]. In both two [37,38] and three dimensions
[12,39–41], the freezing line is found to move to higher
area or volume fraction as a function of activity. In this
sense, activity may be said to suppress crystallisation.
The effect of activity on the process of nucleation has
been studied via classical nucleation theory, in which
a renormalised surface tension was found to provide
reasonable agreement with simulation [42]. At higher
activity in dimension d = 3, the active fluid that coex-
ists with a low-density active fluid through MIPS has a
very high volume fraction [40,41] and crystal nucleation
requires rare fluctuations that exhibit the nearly close-
packed volume fraction of the solid [40]. One intriguing
and unexpected effect of activity upon crystallisation
was the observation of annealing of grain boundaries in
the case of the addition of a small quantity of active
particles to an otherwise passive system [43].

To date, there have been relatively few experiments
with active colloids at high density where crystallisa-
tion due to excluded volume interactions is seen [44].
This is due in no small part to the difficulties in sta-
bilising active colloids at high density against aggrega-
tion. However, recently this has begun to change and
excluded volume interactions have driven ordering in a
few experiments in two dimensions [45–48]. The study
of 3d active colloids is in its infancy; however, one sys-
tem that has emerged of active multi-polar colloids
[49] does exhibit crystallisation to a variety of poly-
morphs also exhibited by related passive dipolar col-
loids [50,51].

In this work, we consider crystallisation regimes in a
system of active Brownian particles in three dimensions.
In particular, we investigate analogous behaviour to the
nucleation-and-growth and spinodal regimes observed
in passive colloidal systems. Furthermore, we find an
unexpected polymorph selection phenomenon that is
uniquely distinct from those observed in passive sys-
tems.

This article is organised as follows. In Sect. 2,
we describe the methodology used for the simulation
runs and the analysis of topological clusters in the
fluid. Results are presented in Sect. 3, with subsec-
tions dedicated to the state diagram (Sect. 3.1), the
dynamical and structural properties of the active fluid
(Sect. 3.2), and the nucleation and crystal growth

behaviour (Sect. 3.3). We summarise our findings in
Sect. 4.

2 Methods

2.1 Computer simulations

We model active colloids as active Brownian particles,
which propel with a constant velocity V0, along their
individual direction vectors e, which in turn are sub-
ject to rotational diffusion. We implement this model
through molecular dynamics simulations using a cus-
tomised version of the open source LAMMPS pack-
age [52], which integrates the following equations of
motion:

ṙ = V0e + βDtF +
√

2Dtη (1)

ė =
√

2Drξ × e (2)

Here, ṙ is the particle velocity, V0 is the magnitude
of the constant applied active velocity, and F is the
inter-particle force. The thermal fluctuations promot-
ing translational diffusion are included in the Gaus-
sian white-noise term η, where 〈η〉 = 0, and Dt is the
translational diffusion coefficient. Thermal noise driv-
ing rotational diffusion of the direction vector e is rep-
resented by ξ, where 〈ξ〉 = 0, and Dr is rotational
diffusion coefficient. The two diffusion coefficients are
related via Dt = Drσ

2/3. For all simulations in this
work β = 5, m = 1, σ = 1. Our measure of time is the
characteristic rotational diffusion time τr = 1/(2Dr)
[39].

The active particles are modelled as being similar to
hard spheres and to achieve this we include a Weeks–
Chandler–Andersen (WCA) inter-particle potential in
the force term in equation (1), which takes the form:

βuwca(r) =

{
4βε

[(
σ
r

)12 − (
σ
r

)6] + ε r ≤ 2
1
6 σ

0 r > 2
1
6 σ

(3)

where ε is the interaction energy, r is the inter-particle
distance.

Since we use the WCA interaction, we cannot assume
the hard particle diameter σ to define a volume fraction.
Furthermore, methods that determine an effective par-
ticle diameter such as Barker–Henderson effective hard
sphere diameter [53] may not hold outside of equilib-
rium systems. Therefore, as in ref. [54], we use the total
density ρ = N/V , where N is the number of particles
and V is the volume of the system.

We use the Péclet number to refer to the relative
strength of the activity in the system, which we define
as: Pe = V0/σDr. Throughout this work, we keep Dr

constant at Dr = 1x and vary Pe by changing the
propulsion velocity V0. Previous studies [12,54] have
shown that when the propulsion force from the activity
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increases relative to the repulsive force from the WCA
interaction, the particles become softer. This change
was observed to manifest in a shifting of the MIPS
phase boundary to higher Pe and ρ, an effect that
can be reduced by using an inter-particle potential that
more closely resembles that of the hard sphere interac-
tion [54]. However, as we focus only on crystallisation
in this work, we perform simulations at low Pe and well
below the MIPS phase boundary, and thus, this effect
in our WCA system is negligible.

To prepare the high density initial configurations
for the simulations, we use the Lubachevsky–Stillinger
algorithm [55]. This takes a given box size and number
of particles and slowly grows and displaces the parti-
cles from σ = 0.1 until they reach σ = 1 with minimal
overlaps. To guard against the presence of any small
but sufficient remaining particle overlaps, we perform a
pre-run simulation with a soft potential:

u(r) = A

[
1 + cos

(
πr

rc

)]
r < rc (4)

where the constant A is ramped from 0 to 100 over and
rc = 2

1
6 . This is run for 1.2τR without activity. Follow-

ing this, we perform our data collection runs with par-
ticles following the equations of motion outlined in (1)
and (2), and the Weeks–Chandler–Anderson (WCA)
inter-particle potential (3).

We perform all simulations in a periodic cubic box
of dimension length L = 27.5σ and vary the number
of particles from 18,000 to 24,000 to explore a range
of densities. This system size is such that the largest
critical nucleus observed in this work was comprised of
less than 4% of the particles in the system, to avoid
the finite size effects that have been studied for seeded
nucleation in the NVT ensemble [56]. For the determi-
nation of structure in longtime steady states, we run
for 7200τR and average over 10 independent configura-
tions. For analysis of nucleation dynamics, we run for
600τr and average over 20 independent configurations.

2.2 Dynamical analysis

The structural relaxation time τα provides a useful met-
ric through which we can understand the effects of
active systems on the verge of crystallisation. We com-
pute τα for various φ and Pe, through calculation of
the self-part of intermediate scattering function:

Fs(k, t) =
1
N

〈
N∑

j=1

exp [ik · (rj(t) − rj(0))]

〉

(5)

where k is the wavevector k = |k|, taken as 2π/σ. We
define τα as Fs(k, τα) = e−1.

2.3 Topological cluster classification analysis

Local structures identified in this work are identified
by the Topological Cluster Classification (TCC) [57].

The TCC algorithm analyses structure through clus-
ters. To identify a cluster, the TCC uses a modified
Voronoi construction to identify a bond network with a
cutoff rc = 1.8σ and a four-membered ring parameter
fc = 0.82. We identify clusters through calculation of
the shortest path 3, 4, and 5 membered rings in the
bond network. For non-crystalline clusters, we consider
only the minimum energy clusters of the Lennard–Jones
interaction, specifically: 5A, 6A, 7A, 8B, 9B, 10B, 11C,
12B, and 13A [58]. Here, the numbers denote the num-
ber of particles in each cluster and the lettering signifies
the cluster geometry [59]. Furthermore, we use the TCC
to identify crystal structure, where 13 particle FCC or
HCP clusters are determined through a central particle
and its 12 nearest neighbours. We quantify the degree
to which a particular structure appears in a configura-
tion as the cluster population Nc/N , where Nc is the
number of particles in a given cluster, and N is the num-
ber of particles in the system. It is important to note
that a particle can belong to more than once cluster.
For example, under certain conditions a particle can
belong to both an FCC cluster and an HCP cluster,
and when comparing such cluster populations, Nc/N
will not sum to 1.

3 Results

In this section, we study the dynamical features of
ABP at high density, where an ordered crystalline
phase is found to spontaneously form in simulations.
We will trace the boundaries of the crystal region, dis-
tinguishing between state points that nucleate through
a nucleation and growth mechanism, and those that
display spinodal nucleation. Through the Topological
Cluster Classification (TCC) method, we will distin-
guish between the FCC and HCP structures and con-
sider the effects of activity on polymorph selection.

3.1 State diagram

In Fig. 1, we show the state points we consider and
the results of our simulations. While other work has
addressed the phase diagram of active Brownian parti-
cles in two and three dimensions with respect to MIPS
[60,61], or reported the full phase diagram of active
disks, in which the freezing line is affected by activity
[38]; here, we distinguish the crystallisation regimes of
nucleation and growth and spinodal by inspection of the
crystallinity as a function of time data (see Sect. 3.3).
In particular, we identify behaviour compatible with
the passive WCA system for Pe = 0. Recall that we
carry out brute force simulations of N ≥ 18,000 and
for a run time of 7200τR. Therefore, we do not obtain
the equilibrium phase diagram [23,24]. Rather, for the
passive case, we find nucleation and growth at density
ρ = 0.89 and spinodal crystallisation at ρ = 0.91. More-
over, since in the passive case we observe an equilib-
rium system, we can convert these densities to effective
volume fractions φ, via the Barker–Henderson method
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Fig. 1 State diagram showing crystallisation regimes of
ABPs in 3D: Non-crystalline, i.e. fluid states (green tri-
angles), crystal freezing via nucleation and growth (pink
crosses), and crystal freezing via spinodal growth (white
squares). The freezing transition follows the dashed black
line, spinodal and nucleation and growth regimes are sepa-
rated by the dotted grey line. The blue dashed line marks
states where the structural relaxation time is constant at
τα = 0.1. Crystalline states are defined as having cluster
populations greater than 20%

[53]. This comes out as φ = 0.56 for nucleation and
growth and φ = 0.57 for spinodal crystallisation, which
is consistent with previous work [28–32], noting that
for numerical work such as this system size and runtime
have significant consequences. We find similar trends to
previous work which considers the effect of activity in
two [37,38] and three dimensions [12,39–41] in which
the freezing line moves to higher volume (or area) frac-
tion as a function of activity. We also note that the
boundary between nucleation-and-growth and spinodal
crystallization depends on system size, as large system
sizes have a lower nucleation time shifting the transi-
tion between the two regimes to lower volume fractions
(or generally to lower supercoolings [62]).

3.2 Dynamical and structural response of the active
WCA fluid to activity

The intrinsic dynamics play an important role in
setting the timescale of crystallisation. In this con-
text, the dynamical response of supercooled liquids
to activity has been found to be highly complex and
to exhibit qualitatively different responses to activ-
ity, from accelerating to slowing down and even non-
monotonic behaviour [63–66]. At the densities, we con-
sider (ρ = 0.72 to ρ = 1.15), in Fig. 2, we see that
upon increasing activity, the system accelerates and the
structural relaxation time drops. Note that since we
consider a monodisperse system, strong supercooling is
not possible as crystallisation intervenes.

In Fig. 3a, we show the two-body structure of
the active fluids via the radial distribution function
g(r). The relationship between two-body structure and

0.7 0.8 0.9 1.0 1.1
ρ

10 −1

10 0 0
2
4
6
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10
12
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Fig. 2 Angell plot of structural relaxation time τα as a
function of ρ, plotted for Pe 0 → 14 (see legend). Data
collected from non-crystalline states

dynamics has been analysed in some detail in active
systems [63–66] and we see a familiar trend here, of a
weakening of the strength of correlations as the relax-
ation time falls, which here is driven by an increase
in activity (Fig. 2). This is particularly evident in the
first minima and subsequent maxima and minima in
the inset of Fig. 3a.

We also consider the response of higher-order struc-
ture to activity in Fig. 3b. Previously this has been
found to develop as an increase in the population of
locally favoured structures in the Wahnström binary
Lennard–Jones model, with activity induced via an
Ornstein–Uhlenbeck process [66]. However, in Fig. 3b,
we find that the population of all local structures that
we consider (those pertinent to the Lennard–Jones
model [58,67]) decreases with increasing activity for
ρ = 0.87 in which we do not find any crystallisation and
simply focus on the liquid local structure. This decrease
in higher-order structure is in marked contrast to the
previous work with the Wahsntröm model; however,
the latter, a model glassformer was much more deeply
supercooled and the dynamics, like the higher-order
structure exhibited the opposite response to activity
noted here, suggesting these two systems are in different
regimes according to the categorisation introduced in
ref. [65]. Our work shows qualitatively similar behaviour
to passive systems when the temperature is increased
[58,68,69].

3.3 Crystal growth and activity

We know from previous work [39,40] that mono-
disperse suspensions of active particles can crystallise
at high density for activities below a certain Pe. The
state diagram for this system is displayed in Fig. 1. We
now consider in more detail the mechanism of crystal
nucleation and polymorph selection at the examined
state points.

In Fig. 4, we look at the size of some selected clus-
ter populations as a function of Peclet number for two
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Fig. 3 Local structure in
spherical ABPs at
ρ = 0.87. a Radial
distribution function g(r),
plotted for Pe = 0, 2, 4, 6,
8, 10. b Cluster population
as a function of Pe.
Colours correspond to the
clusters depicted in the
legend. With the increase
in activity in the system,
we observe increasingly less
structure in the active fluid
across all clusters

Fig. 4 Local structure in 3D ABPs at two densities: ρ =
1.06 (a), ρ = 1.15 (b). Shaded regions show the standard
deviation from 10 independent simulations, where the clus-
ter populations averaged over configurations at t = 7200τR.
Here, we emphasise the 10-membered defective icosahedron
among the amorphous local structures detected by the TCC

because it is a locally favoured structure in the hard sphere
system [70,71]. The dashed vertical lines signal the tran-
sition from spinodal growth to nucleation and growth, fol-
lowed by the transition to the fluid regime as Pe increases

densities in the region of stability of the solid phase,
ρ = 1.06 (a) and ρ = 1.15 (b). In particular, the five-
membered triangular bipyramid consists of two tetra-
hedra (the simplex for spheres in 3d). We also consider
the defective icosahedron which is a locally favoured
structure of the hard sphere system [70,71]. All curves
are obtained by averaging the final state of the simula-
tion runs over 10 independent trajectories. We observe
the following common trends with increasing activ-
ity (Pe): For the passive case (Pe = 0), all trajecto-
ries crystallise into a mixture of FCC and HCP crys-
tals, with a small preference for the FCC phase. This
behaviour was observed in event-driven simulations of
hard-spheres and is explained by finite-size structural
fluctuations that favour FCC-rich nuclei compared to
HCP-rich nuclei, due to the higher stacking entropy of
cubic phases compared to hexagonal phases.

Crystallisation at these high densities occurs spin-
odally, i.e. it is characterised by the appearance of mul-
tiple nucleation events, and where crystal growth is con-
trolled by the annealing of stacking faults. Spinodal
crystallisation persists when activity is introduced in

the system. Looking at the FCC and HCP populations,
we observe that the effect of activity on polymorphism
is to increase the fraction of FCC crystals with increas-
ing Pe, at the expense of the HCP population, which
decreases with increasing Pe. To explain the preference
towards FCC, we recall that the formation of hard-
sphere crystals is subject to a mechanical instability
under the effect of an external force which promotes
the rearrangement of HCP layers into FCC layers [72].
This is confirmed in our simulations, where we observe
the annealing of HCP stacking faults in favour of FCC
environments promoted by the persistent motion of the
active particles. Interestingly, the polymorph composi-
tion of the nuclei changes behaviour at a finite value
of Pe: for example, for ρ = 1.06 (ρ = 1.15) the FCC
population reaches a maximum in relative composition
at Pe ∼ 3 (Pe ∼ 8).

This change of polymorphic behaviour coincides with
a change in the crystallisation channel from spinodal to
a nucleation-and-growth regime. In Fig. 4, the onset of
the nucleation-and-growth regime is indicated with the
dashed vertical line. Here, nucleation is a rare event
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Fig. 5 Mean first passage time as function of nucleus size
n in the nucleation and growth regime: ρ = 1.06, Pe = 4.8,
5.0, 5.2 plotted in black, blue and green, respectively. Inset
shows the nucleation rate k and the critical nucleus nc as a
function of Pe, extracted from fitting at low n

and within our simulation box the crystal grows from
a single critical nucleus. In this regime, nucleation pro-
ceeds with a smaller number of grain boundaries, and
the polymorph composition tends towards the passive
value.

Further increasing the activity causes the nucleation
rate to drop, until crystallisation is no longer observed.
In Fig. 4, this transition is represented with the vertical
dash-dotted line where, not only do crystalline environ-
ments rapidly decay, but defective icosahedra environ-
ments increase to signify the transition to a fluid regime.
At high Pe, this higher-order structure weakens, similar
to the fluid case (ρ = 0.87) (Fig. 3b).

In Fig. 5, we focus on the state points displaying
nucleation-and-growth and plot the mean first passage
time 〈tfp(n)〉, defined as the average elapsed time until
the appearance of a nucleus of size n, at ρ = 1.06 and
at three different Pe numbers. Over a wide range of n,
〈tfp(n)〉 can be fitted with the expression

〈tfp(n)〉 =
1

2kV
{1 + erf [c(n − nc)]} (6)

where k is the nucleation rate, nc is the critical nucleus
size, erf is the error function, and c is a constant which
in the equilibrium case (Pe = 0) is proportional to the
curvature of the nucleation barrier ΔF at the critical
size, c =

√
ΔF ′′(nc)/kBT . The curves show that the

mean first passage time increases with increasing activ-
ity, with a consequent drop in the nucleation rates K
extracted from the functional fits of Eq. 6 and plotted
in the inset. Activity hinders nucleation, and even more
so if the nucleation rates are scaled by the relaxation
time in the fluid τα which, as plotted in Fig. 2, drops
faster than exponentially with increasing Pe. Interest-
ingly, the critical nucleus size nc, as indicated on the
right axis of Fig. 5 inset, also decreases with increasing
activity. These critical sizes are considerably larger than

what is typically observed in the passive case (at the
same density), owing to the acceleration of the under-
lying fluid dynamics with activity, that allows the obser-
vation of longer nucleation induction times.

In Fig. 6, we focus on the spinodal nucleation regime,
i.e. when the non-equilibrium nucleation barrier is low
enough for multiple nucleation events to occur simul-
taneously in the simulation box, and crystallisation is
an activated process controlled by the rate of addition
of new crystals on the nuclei. Panel (a) shows the frac-
tion of crystalline particles as a function of time for
Pe = 0, 2, 4 (continuous, dashed and dotted curves,
respectively) and distinguishing between FCC (green
curves) and HCP (black curves). For both FCC and
HCP, we observe an increase in the crystal growth rate
as a function of activity. The fraction of HCP at Pe = 4
shows a marked decrease at long times, which is due to
the annealing of HCP stacking faults that we observed
also in Fig. 4. To analyse the growth regime in panel (b),
we fit the curves for the FCC phase with the Avrami
equation.

Y = 1 − e−Ktn (7)

where Y is the crystal fraction Y = (Nc − N0)/(N −
N0), with Nc the number of crystalline particles, N0

the starting number of crystalline particles, and N the
total number of particles. K = πkĠ3/3 is the Avrami
constant proportional to the nucleation rate k and the
growth rate Ġ, and n is the Avrami exponent. From
the fits in panel (b), we obtain n � 1 and an increase
in the growth constant K with increasing Pe. In panel
(c) we show how the crystalline growth is rescaled by a
characteristic time tAv = K−1/n (plotted in the inset).
This timescale decreases with activity, signalling the
increase in the growth rate with Pe. What appears to
be an increase in the growth rate of nuclei in units of the
active particles rotational time τR is still a significant
slowing down if measured instead in units of the relation
time τα.

4 Conclusion

We have considered the crystallisation behaviour of a
suspension of active Brownian Particles that interact
with a hard-sphere like interaction. We showed that the
freezing line is strongly affected by activity and moves
to higher densities as we increase the Pe number of the
active particles consistent with previous work [12,39].
This is accompanied by a reduction in the nucleation
rate, nucleation barriers and critical nucleus size with
increasing activity. Despite the suppression of nucle-
ation, the growth of nuclei is enhanced by the acceler-
ated dynamics of the melt. This allows us to observe
spinodal nucleation, where the growth is controlled by
the rate of particle attachment, and thus speeded-up
with activity.
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Fig. 6 a FCC and HCP cluster population growth time in
the spinodal regime for ρ = 1.06, and Pe = 0, 2, 4. FCC and
HCP are plotted in green and black, respectively, and the
Pe is denoted by the line-style. Shading indicates the stan-
dard deviation from averaging 20 independent simulations.

b FCC crystal fraction Y for Pe = 0, 1, 2, 3, 4 at φ = 0.67,
and here, Y has been fit with the Avrami equation. c as for
(b) but with Y scaled by the characteristic time tAv; inset
shows the variation of tAv with Pe

We observe a decrease in pair- and higher-order struc-
ture in the fluid with increasing activity. The former is
compatible with certain dynamic regimes observed pre-
viously [63–65]. This is intriguing as one may enquire as
to the nature of the higher-order structure approaching
the MIPS phase boundary [40,41]. Very recently, com-
parisons have been made between MIPS and criticality
in passive systems [41], and in the case of passive sys-
tems, approaching criticality, the population of higher-
order structure detected by the TCC increases [60], in
marked contrast to our findings here. In the future, it
would be interesting to investigate whether the trend
we have observed changes closer to the MIPS boundary
or whether the response of the higher-order structure is
profoundly different to passive systems.

Remarkably, activity also has a strong effect on poly-
morph selection. While the passive system crystallises
in an equimolar mixture of FCC and HCP, active par-
ticles progressively favour the FCC phase at higher Pe.
We observe this as annealing of HCP stacking faults,
especially close to the crystal boundaries.
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