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ABSTRACT
Colloids may be treated as “big atoms” so that they are good models for atomic and molecular systems. Colloidal hard disks are, therefore,
good models for 2d materials, and although their phase behavior is well characterized, rheology has received relatively little attention. Here,
we exploit a novel, particle-resolved, experimental setup and complementary computer simulations to measure the shear rheology of quasi-
hard-disk colloids in extreme confinement. In particular, we confine quasi-2d hard disks in a circular “corral” comprised of 27 particles held
in optical traps. Confinement and shear suppress hexagonal ordering that would occur in the bulk and create a layered fluid. We measure
the rheology of our system by balancing drag and driving forces on each layer. Given the extreme confinement, it is remarkable that our
system exhibits rheological behavior very similar to unconfined 2d and 3d hard particle systems, characterized by a dynamic yield stress and
shear-thinning of comparable magnitude. By quantifying particle motion perpendicular to shear, we show that particles become more tightly
confined to their layers with no concomitant increase in density upon increasing the shear rate. Shear thinning is, therefore, a consequence
of a reduction in dissipation due to weakening in interactions between layers as the shear rate increases. We reproduce our experiments with
Brownian dynamics simulations with Hydrodynamic Interactions (HI) included at the level of the Rotne–Prager tensor. That the inclusion of
HI is necessary to reproduce our experiments is evidence of their importance in transmission of momentum through the system.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0087444

I. INTRODUCTION

Confined fluids often exhibit modified flow behavior com-
pared to the bulk due to coupling to the boundary. This may be
static (i.e., structural alterations due to energetic or entropic inter-
actions) or dynamic (e.g., the hydrodynamic influence of the wall).
The shear viscosity of simple liquids increases by orders of magni-
tude in films less than ∼7 molecules thick.1–3 This is a consequence

of confinement-induced solidification near the boundary, driven
by van der Waals interactions.4–6 By contrast, the viscosity of
water increases more modestly under similar conditions7,8 as
confinement-induced solidification is suppressed by the hydrogen
bond network.

On the mesoscopic scale, rheological measurements of
two-dimensional soft materials typically focus on interfacially
adsorbed components including nanoparticles,9,10 proteins,11–14

J. Chem. Phys. 156, 184902 (2022); doi: 10.1063/5.0087444 156, 184902-1

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0087444
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0087444
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0087444&domain=pdf&date_stamp=2022-May-9
https://doi.org/10.1063/5.0087444
https://orcid.org/0000-0001-6997-1823
https://orcid.org/0000-0001-7648-0010
https://orcid.org/0000-0001-5376-8062
https://orcid.org/0000-0003-0760-7940
https://orcid.org/0000-0003-1771-6550
mailto:paddy.royall@epsci.psl.eu
https://doi.org/10.1063/5.0087444


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

lipid,15–18 surfactant19 and polymer,10,20–22 monolayers or asphaltene
films,23–25 2d foams,26,27 Hele-Shaw emulsions,28 lipid bilayers,29

dusty plasmas,30 and colloids.11,31–34 The latter can be tailored to
exhibit interactions similar to simple models of atomic and molec-
ular systems, and since they explore phase space in much the same
way, colloids provide a means to probe the same phenomena, for
example, the effect of confinement, and other external fields, such as
shear, upon phase behavior.35–37 Due to their mesoscopic size, col-
loids may be confined by walls that are smooth on the particle scale
or by walls that are rough (such as atomic and molecular systems).

Another class of materials at a somewhat larger lengthscale is
(athermal) granular matter and here too individual particles may

be studied, and even the force networks between them.38 Under
vibration, granular matter can mimic the phase behavior of thermal
systems.39 The rheology of granular matter has received consider-
able attention.40–46 Like suspensions of colloids, granular materials
become much more viscous at high packing fraction; however,
the limiting case of divergence viscosity is jamming in the case of
grains, rather than the thermal glass transition (which occurs at
a lower packing fraction) in the case of colloids.47 At the micro-
scopic level, the shear response of colloidal and granular systems
is distinguished in that colloidal particles usually do not come into
physical contact with each other or with the walls of the sample cell.
Therefore, dissipation occurs through hydrodynamic coupling and

FIG. 1. (a) and (b) Annotated micrographs and (c) side-view schematic. (a) Shear-melted, layered system for Pe ≥ 5.25. (b) Hexagonal structure at Pe = 1.75. Red crosses
label optically trapped particles that are translated along the circular path indicated by the red arrow. Polar co-ordinates (r , θ) are defined from the center. R is the boundary
radius. Orange dashed lines in (a) and (c) demarcate particle layers, numbered 1–5 from the center. Pink lines in (b) indicate the hexagonal structure. (d) Histograms of
radial particle location in experiments at Pe indicated in legend. The y-axis scale is arbitrary and data are offset in y for clarity. (e) Angular velocity profiles corresponding
to experiments in (d). Vertical dashed lines demarcate layers, and zeros represent the interlayer boundaries. (f) Area fraction as a function of layer number measured from
average Voronoi cell areas in experiment. Lines are colored according to driving Pe. Black data represent the unsheared system where differing local structure leads to
a change the distribution of local area fraction across the layers [see (d)]. (g) Area fraction from Voronoi cell area as a function of driving Pe for each layer, measured in
experiment. [(h)–(i)] Illustrated interpretation of shear thinning. Coupling between layers depends on the range of radial motion within adjacent layers. In a slowly driven
system, (h), particles explore a larger radial extent than in a quickly driven system, (i). For larger local shear rate, particles in adjacent layers are further apart, interlayer
interactions are weaker and the effective viscosity is lower. This manifests as shear thinning.
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Brownian motion rather than friction due to direct contacts as
in granular matter. Very occasionally, under extreme shear rates
for example, contact can occur, leading to very sudden shear
thickening.48,49

In colloidal systems at volume or area fractions where glassy
dynamics are encountered, researchers report both increases and
decreases in viscosity with respect to the bulk depending on the
degree of confinement and the boundary details. Relaxation may
be accelerated (decelerated) near smooth (rough) walls.50–52 These
effects are attributed to boundary-induced structural modification
dependent on the shape, roughness, wetting characteristics, or inter-
action potential of the wall (to name but a few possibilities).53–55

As a general rule, the formation of well-defined particle layers is
associated with faster relaxation or reduced viscosity.

The bulk rheology of a hard-sphere-like (or hard-disk-like) col-
loidal suspension depends on its volume (or area) fraction, ϕ,56 and
the shear rate, γ̇. At low shear rates, viscosity decreases with γ̇.57–60

For volume (area) fractions approaching the hard sphere (disk) glass
transition, shear thinning occurs after the applied stress exceeds a
yield stress on the scale of kBT/a3, where kBT is the thermal energy
and a is the particle radius.59–64 Upon increasing γ̇, hard sphere sus-
pensions exhibit a Newtonian plateau followed by shear thickening
at very high shear rates.57,58,65,66 Shear thinning in these systems
is attributed to stratification of particles decreasing resistance to
flow, while shear thickening at high γ̇ is a consequence of frictional
particle surfaces.67

While the rheology of (3d) colloidal hard spheres has been
extensively studied,68–70 attention to their 2d analog, hard disks has
focused on quiescent (unsheared) systems.71–80 Here, we focus on
the rheology of confined colloidal hard disks. We present experi-
ments on a quasi-hard-disk system of spherical colloids adjacent to
a solid substrate confined by 27 identical particles optically trapped
along a circular boundary and subjected to shear by boundary rota-
tion. These are accompanied by computer simulation of a 2d system
using Brownian dynamics with hydrodynamic interactions (HI)
included at the level of the Rotne–Prager tensor. Under quiescent
conditions, our system has a bistable state between a hexagonal con-
figuration that distorts the flexible walls [Fig. 1(b)] and a layered
fluid where hexagonal ordering is suppressed [Fig. 1(a)]. Hexagonal
configurations exhibit voids adjacent to the wall, enabling relaxation
mechanisms that are absent in the bulk.78 Under shear, hexagonal
configurations rotate as a rigid body, slipping only at the wall inter-
face, while layered fluid configurations slip between each layer. At
higher shear rates, the system is shear melted and only the layered
fluid is observed.81 It has subsequently been shown that simulations
of a similar system exhibit distinct regions of shear thinning and
thickening as a function of shear rate.82,83 Here, we develop a layer-
by-layer approach to determine local rheological properties directly
from experiments and simulations via drag forces, and we character-
ize motion perpendicular to shear via mean squared displacements.
Our approach opens a route to particle-level analysis of rheological
properties in experimental systems.

The key finding of this work is that, in contrast with many
molecular liquids,1–3 strong confinement has little effect on the shear
rheology of colloidal quasi-hard-disks. Our measurements are qual-
itatively and quantitatively aligned with simulations of hard disks
under steady shear.62 We measure a flow curve indicative of a yield
stress, and shear thinning toward a Newtonian plateau. Motion

perpendicular to shear is suppressed with no change in local density
as shear rate is increased. We hypothesize that this suppression of
perpendicular motion reduces the coupling between adjacent par-
ticle layers, reducing drag, and dissipation, and consequently, we
measure a reduction in viscosity. This interpretation is illustrated
in Figs. 1(h) and 1(i). Our simulations reveal that the mechanism
of momentum transfer in this system is dominated by hydrody-
namic interactions, and the excluded volume interactions between
the particles play a rather minor role.

This paper is organized as follows. Section II describes the
experimental and simulation procedures and details of our stress
calculation. Full details of the drag coefficient determination, sim-
ulations, and interlayer hopping are provided in AppendixesA–C.
Section III A presents key structural and dynamic measurements
required for the measurements of local shear rate, stress, and vis-
cosity in Sec. III B. Section III C quantifies the motion perpendicular
to shear. Finally, Sec. IV combines these measurements to develop
our explanation of shear thinning. We conclude this work in Sec. V.

II. METHODS
A. Experiment

Figures 1(a) and 1(b) show micrographs and (c) shows a
side-view schematic of the system. Polystyrene spheres of radius
a = 2.5 μm and polydispersity 2% are suspended in a 3 : 1 mass
ratio mixture of deionized water and ethanol, loaded into a cell
constructed using three glass coverslips and a microscope slide and
sealed with epoxy. Due to their density mismatch with the solvent,
the particles quickly sediment, forming a quasi-two-dimensional
layer adjacent to the lower glass cover slip, which is treated with
Gelest Glassclad 18 to prevent particle adhesion. The gravitational
length is lg/a = 0.030 ± 0.002, resulting in negligible out-of-plane
particle motion in the z direction, while still being far enough from
the substrate that any direct interactions with the substrate through
contacts can be safely neglected. Interparticle interactions are of
Yukawa form with a Debye length λD ≈ 25 nm, which is sufficiently
short that they may be considered quasi-hard-disks.84 In the dilute
limit, the time for a particle to diffuse its radius (the Brownian
time) in the substrate-adjacent, the quasi-two-dimensional layer is
measured to be τB ≈ 70 s.

Computer-controlled holographic optical tweezers in an
inverted microscope are used to manually gather N = 75 particles,
27 of which are optically trapped to form a circular boundary of
radius R, which confines the remaining nconf = 48. The spring con-
stant of the optical traps maintaining this boundary is extracted
from the trapped particle trajectories and is determined to be
k = 105(1)kBTa−2. The colloids sediment to the bottom of a sample
cell, and thus, there is a (relatively) large amount of solvent above.
We presume that any local heating effect is swiftly dissipated to the
surrounding solvent. When we tested the system, for example, at dif-
ferent strengths of the laser tweezers, we saw no signs of any such
heating.

Using the optical tweezers, the boundary particles are translated
along a circular path through the periodic displacement of the opti-
cal tweezers array in discrete steps of length a/4. The frequency with
which the array of traps is updated defines the boundary rotation
speed, which we characterize using the boundary Péclet number,
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Pe = τB/τD, where τD is the time taken to drive a boundary par-
ticle a distance a. We consider experiments with Pe in the range
1.75 ≤ Pe ≤ 19.25.

Following the initiation of boundary rotation, the system is left
to complete five full rotations before micrographs are acquired at a
rate of 2 fps for up to 3 h. No indication of anything other than a
steady-state behavior was found. Particle trajectories are extracted
from micrographs using standard algorithms.85 Circular polar
co-ordinates, r and θ, are defined from the system center.

B. Simulation
We perform 2d Brownian dynamics simulations of strongly

screened charged colloids interacting via a Yukawa pair potential
under highly ionic conditions,

V(r) = V0
e−κr

κr
, (1)

with r denoting the interparticle separation. The inverse screen-
ing length κ is chosen as κa = 14.85 and the contact potential
V(r = 2a) ≈ V0kBT where V0 = 0.85, informed by the experimen-
tal parameters, ensuring quasi-hard-disk behavior.81 In particular,
we found empirically that κa = 14.85 was sufficiently hard to closely
reproduce key dynamical properties of the experimental system such
as the way in which layers of particles slip past one another. Fur-
ther details are available in Appendix A and Ref. 81. We neglect
polydispersity. Boundary particles experience harmonic potentials
mimicking optical traps and are translated along a circular path at
a prescribed rate. Hydrodynamic effects are accounted for at the
Rotne–Prager level86,87 in the presence of a planar substrate (Blake’s
solution88), giving the overdamped equation of motion for a particle
trajectory ri in a time step δt,

ri(t + δt) = ri(t) +
⎛
⎝

N

∑
j=1

μijFj
⎞
⎠

δt + δWi. (2)

The mobility tensor μij comprises both the self-mobility and the
entrainment of particle i by the hydrodynamic flow field created by
conservative forces Fj on particle j. This force stems from pair inter-
actions and, for the boundary particles, the harmonic potentials. The
random displacement, δWi, is sampled from a Gaussian distribution
with zero mean and variance 2D0δt (for each Cartesian component)
fixed by the fluctuation–dissipation relation, where D0 is the diffu-
sion coefficient. Further details are provided in Appendix A. We
have previously shown that these simulations faithfully reproduce
experiments both qualitatively and quantitatively.81

C. Stress calculation
Figure 1(a) shows that the particles organize into concentrated

layers. This motivates our determination of the stress, by considering
each layer, i. We presume that the angular velocity and radial posi-
tion are constant within each layer, which, as we show in Sec. III, is
reasonable for our purposes. We thus perform a series of force bal-
ances to obtain the stress across each layer, σi. Within each layer,
there are three forces that must sum to zero at steady state. There is
some driving force (either optical forces or the transmitted force due

to the motion of an external layer), Fext. This is balanced by some
self-drag force representing dissipation within the layer, Fself, and
some additional force that drives the next internal layer, Fint. In the
case of layer 1 (the central layer), there is only self-drag.

The dilute limit single particle drag coefficient near the sub-
strate, ζemp = 1.9 × 10−7 kg s−1, is extracted from measurements
of Brownian motion in the dilute limit, without any optical traps.
However, multiple particles moving along a circular path of radius
r near a substrate each experience reduced hydrodynamic drag due
to the presence of the other particles.89 This is the drafting effect.
This drag reduction depends on the number of particles and r, which
suggests that particles in different layers experience different drag
coefficients. Based on the discussion in Appendix B, we assume a
constant drag coefficient throughout the system, ζ = 0.34ζemp, which
is reduced compared to the dilute limit drag coefficient due to
many-body hydrodynamic effects, but is independent of radius. This
effect is discussed in greater detail and this approximation is justi-
fied in Appendix B. We, therefore, assume that the self-drag force
has the same form for all particles and is proportional to velocity,
Fself = ζrω.

Consider layer 5, the boundary, which consists of n5 = 27 parti-
cles, each of which is located at radial position r5 and subjected to an
optical force Fopt. All n5 particles move with angular velocity ω5 and
each experiences a self-drag proportional to its velocity. Balancing
the forces on layer 5 yields

n5Fopt − n5ζr5ω5 − F4 = 0, (3)

where F4 is the as of yet unknown force transmitted inwards to drive
the motion of all n4 = 21 particles forming layer 4. The force balance
for layer 4 is then

F4 − n4ζr4ω4 − F3 = 0, (4)

where, once again, F3 is the unknown force required to drive layer
3. Propagating the layer-by-layer force balance inward to layer 1
reveals the retrospectively trivial result that the optical driving forces
are exactly balanced by the self-drags experienced by all of the
particles,

n5Fopt − ζ
5

∑
i=1

niriωi = 0. (5)

Replacing the optical forces by the sum of the drag forces gives the
unknown force required to drive layer i, Fi, as the sum of the drag
forces on layer i and all layers that are internal to i,

Fi = ζ
i

∑
j=1

njrjωj. (6)

Assuming that the interlayer forces act at circular contact lines
between layers at radial locations intermediate between the two
layer centers, we calculate the two-dimensional tangential stress on
layer i,

σi =
ζ

π(ri + ri+1)
i

∑
j=1

njrjωj. (7)

J. Chem. Phys. 156, 184902 (2022); doi: 10.1063/5.0087444 156, 184902-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

III. RESULTS
We begin by recapitulating the structural and dynamic features

necessary for our rheological analysis. We subsequently implement
the analysis described in Sec. II C to measure the shear rheology
combining particle-level structural and dynamic information to
extract stresses from drag forces. Finally, we quantify particle motion
in the radial direction, perpendicular to shear.

A. Angular velocity profiles and structure
Without shear, the system can adopt either layered fluid or

locally hexagonal structures, shown in Figs. 1(a) and 1(b), respec-
tively.78 When sheared at Pe ≲ 3, hexagonal structures can persist
and rotate as a rigid body.81 The hexagonal structure is characterized
by multiple peaks in the radial density profile [black line in Fig. 1(d)]
and a flat angular velocity profile [black line in Fig. 1(e)]. For Pe ≳ 3,
the system is shear melted and only layered structures are observed
[colored data in Fig. 1(d)]. The location of the ith peak in the layered
density profile is labeled ri. Layer populations are fixed at n1 = 3,
n2 = 9, n3 = 15, n4 = 21, and n5 = 27. In these shear melted exper-
iments, angular velocity decreases in a step-like manner from the
boundary to the center [colored data in Fig. 1(e)], representing slip-
ping between adjacent layers. The average angular velocity within
layer i is denoted ωi.

The area fraction is estimated for layer i as ϕi = πa2/⟨AV⟩i,
where ⟨AV⟩i is the average Voronoi cell area for particles in layer
i.79 Figure 1(e) shows that ϕ varies from ϕ1 ≈ 0.8 at the center, to
ϕ4 ≈ 0.76 adjacent to the boundary. At these densities, bulk hard
disks are crystalline.90 However, in shear-melted experiments,
hexagonal ordering is inhibited by the curved boundary and the
application of shear and our system is liquid-like.78,81

Shearing the system modifies the area fraction profile compared
to the unsheared system [Fig. 1(e)], enhancing ϕ4 and suppressing ϕ3
and ϕ2. However, once the system is shear melted, the area fraction
profile is insensitive to Pe in the range of Pe investigated, as shown
in Fig. 1(f).

B. Shear rheology
To characterize the shear rheology, we follow the analysis in

Sec. II C and treat the shear-melted system as a series of coupled lay-
ers, following Ref. 26. Layers have fixed populations, ni. We assume
all particles are located at radial position ri corresponding to the
peaks in the density profile [Fig. 1(d)] and move with angular veloc-
ity ωi [Fig. 1(e)]. Viscosity is η = σ/γ̇, where σ is the stress and γ̇ is
the shear rate. The shear rate experienced by layer i is obtained from
the angular velocity profile as

γ̇i = ri
Δωi+1,i

Δri+1,i
, (8)

where Δωi+1,i = ωi+1 − ωi is the step down in ω between layer
i + 1 and layer i, and the radial separation between the layers
Δri+1,i = ri+1 − ri.

We determine the stress throughout the system as discussed in
Sec. II C. In particular, the corresponding stresses, σi, are obtained
via a force balance on each layer, and the key result given in Eq. (7)
is that the force required to drive layer i is the sum of the drag forces
on layer i and all layers internal to i. This force acts along a circular
interlayer contact line, giving the stress on layer i, σi, from which we
define an effective viscosity, ηi = σi/γ̇i, for each layer.

Figure 2 shows the results of this analysis for experiments
(squares) and simulations (crosses). Stress is scaled by ζ−1τB, shear
rate by τB, and viscosity by ζ−1 to facilitate the comparison. Points
in the main panels are colored according to the driving Pe, while
the insets present the same data colored by the layer number. Error
bars are determined from angular velocity fluctuations in each layer
determined from particle tracking. We see in Fig. 2 that the simula-
tions do not reach such low shear rates low rates as the experiments.
Now, the only parameter that is directly set in both the experi-
ments and the simulations is the rotation speed of the outer particle
layer. Shear rates experienced by internal layers are determined by
the physics of the system, i.e., the coupling between adjacent lay-
ers. Therefore, the shear rates plotted are measurements, not directly
controlled quantities.

FIG. 2. (a) Dimensionless stress and (b) viscosity as a function of dimensionless strain rate from experiments (squares) and simulations (crosses). The solid (dashed) line
shows Herschel–Bulkley fit to experimental (simulated) data. Points are colored according to the driving Pe. Error bars are determined from angular velocity fluctuations in
each layer. Insets show the same data colored according to the particle layer as indicated in the legend.
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The viscosity of hard particle suspensions depends on shear rate
and volume/area fraction.56–60,62–64 The shear rate is the largest in
layer 4 and the smallest in layer 1 and lower viscosity is measured for
greater shear rate. However, Figs. 1(f) and 1(g) show that local area
fraction is the largest in layer 1 and decreases toward the boundary.
Therefore, measuring larger viscosity nearer the center of the sys-
tem could be a consequence of increased density, and unrelated to
the local shear rate. However, Fig. 1(g) shows that the area fraction
of each layer is independent of Pe, and the inset in Fig. 2(b) shows
that the viscosity of a given layer does decrease as the shear rate
increases. We expect the spatial variation in area fraction to make
some contribution to the viscosity, but the shear rate dependence is
unambiguous.

The data in Fig. 2 are remarkably consistent with theoretical
predictions and simulations of unconfined binary hard disks under
steady shear.62 The flow curve suggests a dynamic yield stress,63,91,92

beyond which shear thinning is found. At high γ̇, the response
approaches a Newtonian region. The solid (dashed) black lines show
Herschel–Bulkley fits to the experimental (simulated) data of the
form σ = σy + kγ̇ ν, where σy is the dynamic yield stress and ν is
the high shear rate exponent, which is unity for Newtonian flow.

The fits yield ν = 0.82 ± 0.03 in experiment and ν = 0.97 ± 0.06 in
simulation, consistent with weakly shear thinning (experiment) and
Newtonian (simulation) flow at the largest shear rates studied. We
relate the yield stress to the change in structure upon the applica-
tion of shear, from a hexagonal to layered fluid configuration. It is
possible to fit the data in Fig. 2 with a power-law σ = k′γ̇ ν′ (rather
than the Herschel–Bulkeley fit). While the error bars in the case of
the data points corresponding to low shear rates are large enough,
this regime can be fitted with a power law; in fact, the fit at a high
shear rate is much worse than the Herschel–Bulkeley fit shown. Fur-
ther dependencies are of course possible, such as a power-law with a
shear-rate dependent exponent. While this would be most interest-
ing to explore in the future, the quality of our existing data means
that it may be challenging to accurately discriminate between such
more complex dependencies.

The dynamic yield stress is ∼0.1kBT/a2. A dynamic yield stress
is the stress required to maintain flow and is smaller than the static
yield stress, which must be exceeded during flow start-up. Although
we focus on yielded systems, at very low Pe, the system is unyielded
and rotates as a rigid body.81 Rigid-body rotation requires the local
stress to be less than the static yield stress. Therefore, the stress

FIG. 3. Radial mean squared displacements. All experimental data in (a) layer 4, (b) layer 3, (c) layer 2, and (d) layer 1. Black points and gray shaded regions represent
average and standard deviation of behavior in five unsheared experiments. All simulation data in (e) layer 4, (f) layer 3, (g) layer 2, and (h) layer 1. (i) All layers in a single
experiment driven at Pe = 14. (j) All layers in a single free center simulation driven at Pe = 14. Points in [(a)–(h)] colored according to driving Pe and in (i) and (j) according
to layer number as indicated in the legends. Lines in (i) and (j) show fits to Eq. (9) as described in the text.

J. Chem. Phys. 156, 184902 (2022); doi: 10.1063/5.0087444 156, 184902-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

measured in unyielded systems is a lower limit estimate of the static
yield stress. In experiment, the largest stress for which the system
does not yield is ∼1.9 kBT/a2, which is comparable to yield stresses
at the scale kBT/a3 in hard spheres.59,60,63,64

The crossover from shear thinning to Newtonian flow occurs in
the range γ̇τB ∼ 10−1 to 100, which is coincident with this crossover
in simulations and theory of hard disks,62 hard spheres,58 and
charged colloids.93,94 The rheology under such strong confinement
bears even a qualitative resemblance to bulk behavior is a remark-
able finding. Many molecular liquids and complex fluids exhibit
increases in viscosity of many orders of magnitude when confined
to a few particle layers,1–3,50–52 but this is not the case for colloidal
hard disks, which reproduce their predicted bulk rheology when
confined to a system only eight particles across. We emphasize that
the yield stress is likely related to the shear-induced melting of
hexagonal order in this system. This ordering we have investigated
previously.81,84

C. Motion perpendicular to shear
At the particle population of interest, and on the timescale of

the experiment, particles are confined to layers (Appendix C). How-
ever, within the layers, they exhibit positional fluctuations in the
radial direction as indicated by the width of the peaks in Fig. 1(d).
The mean squared displacement (MSD) in the radial coordinate
is shown in Fig. 3 for all experiments [(a)–(d)] and simulations
[(e)–(h)]. Black points in the experiment panels show the radial
MSD for Pe = 0, averaged over five experiments. These MSDs grow
with time up to a plateau, which represents the confinement within
layers. In the case of the experiments, the increase to a (somewhat
noisy) plateau is continuous, and in some simulation data, notably
for layer 2, there is some evidence of two timescales in the radial
MSD [Fig. 3(g)]. Given that this two timescale behavior is only

evidenced in layer 2 of the simulations, and not at all in the
experiments, we focus on a single timescale, τrad, as determined in
Eq. (9).

Within each layer, the radial MSD approaches its plateau more
quickly as Pe is increased, indicating a coupling between radial
and tangential motions. The shear rate is the largest in layer 4 and
decreases toward the system center. The long-time plateau is reached
most quickly in layer 4, and progressively more slowly in layers 3
and 2. Therefore, larger γ̇ causes faster radial motion. In addition,
in all, but the central layer, shearing increases the plateau above that
measured in the unsheared system (black data), indicating that the
amplitude of radial motion is increased under shear.

Radial MSDs are fit with a function of the form

⟨Δr2(t)⟩ = A(1 − e−t/τrad), (9)

which captures their growth with A being the plateau height. Exam-
ple fits for all four layers in an experiment and a simulation at
Pe = 14 are shown in Figs. 3(i) and 3(j). We note that not all of the
fits in (i) and (j) are of high quality. While we did find an improved
fitting with the use of two timescales [i.e., two independent contri-
butions to the right hand side of Eq. (9)], in fact, the small timescale
proved to be very scattered, and its physical significance was unclear.
A more sophisticated treatment than we have performed here with
Eq. (9) would be interesting to explore in the future.

Figure 4 shows the radial MSD plateau height A and timescale
τrad as a function of the local shear rate for all experiments and sim-
ulations. The fit to the plateau height [Fig. 4(a)] reveals a downward
trend with increasing γ̇ in both experiment and simulation for all
layers except layer 1. Figures 3 (a)–3(d) show that shear enhances
radial motion compared to the unsheared case (with the exception
of layer 1). However, fitting reveals that this enhancement is greatest
for lower shear rates. Particles are maximally radially mobile at the

FIG. 4. Parameters extracted from fits to radial MSDs as a function of shear rate. (a) Plateau height A [Eq. (9)]. (b) Timescale τrad [Eq. (9)]. Solid (dashed) lines guide the
eye to trends in experimental (simulated) data. Points are colored according to layer number indicated in the legend.
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onset of shear melting to a layered fluid and become increasingly
confined in their layers at higher γ̇.

The timescale τ shows a similar dependence on γ̇ [Fig. 4(b)],
decreasing as γ̇ increases, indicating a faster approach to the long-
time plateau. When subjected to faster shear, particles more quickly
explore their full range of motion perpendicular to shear. This is
very clearly evident for layers 2–4 in experiments. Once again, layer
1 does not follow the trend evident in layers 2–4.

IV. DISCUSSION
The rheology of our system is similar to that of bulk colloidal

hard disks, with evidence for a yield stress and shear thinning.62 Our
particle-resolved approach allows us to address the origins of this
yield stress and shear thinning. The former we believe is related to
the breakdown of hexagonal configurations found in the absence of
shear. The latter seems to be similar to the 3d case of shear-induced
stratification.58 We have shown that motion parallel and perpendic-
ular to shear are coupled. At larger local shear rate, particles more
quickly explore their layer radially. Simultaneously, the extent of
radial motion within the layer is reduced and they are more tightly
confined. This is concurrent with shear thinning.

In colloidal hard sphere (and disk) systems, shear thinning is
attributed to increased stratification parallel to shear as the shear
rate is increased.94,95 When particles are organized into layers, inter-
actions between them become weaker, and, consequently, the resis-
tance to flow is reduced. Concentric particle layers are enforced by
the boundary of our system, and therefore, the flow resistance is
inherently lower than in a bulk suspension at comparable density.
However, Fig. 2 shows that shear thinning is observed. We explain
this fact using the data in Sec. III C. Radial motion is suppressed as
the shear rate is increased; however, Fig. 1(f) shows that local area
fraction is independent of Pe. Faster shearing does not increase the
packing density of particles, yet they exhibit more tightly confined
dynamics. Radial motion brings particles to interact with particles
in adjacent layers, which dissipates energy and resists flow. Sup-
pressed radial motion with no concomitant increase in area fraction
means that particles in adjacent layers are, on average, further apart
and their interactions with one another are weakened. This results
in a reduction in drag between layers, and therefore flow resis-
tance or viscosity. This interpretation is illustrated in Figs. 1(h) and
1(i). Thus, the radial dynamics suggest the rheology—at larger shear
rates, particles are more tightly confined to their layers at constant
density. This reduces interlayer drag and leads to shear thinning.

What is the nature of the interactions that dominate the
rheology of our system? Our simulations include hydrodynamic
interactions at the Rotne–Prager level for the particle–particle inter-
actions and also the Blake tensor for the coupling to the substrate.
We found it necessary to include HI at this level to reproduce
the behavior of the experiments. Pure Brownian dynamics (with-
out HI between the particles) leads to weak momentum transfer
through the system due to a far higher level of slip between the lay-
ers than is encountered in the experiments. Therefore, we conclude
that momentum transfer is dominated by HI and that steric effects
due to the excluded volume of the particles play a secondary role.
Thus, compared to molecular systems, where van der Waals inter-
actions can lead to solidification near the boundary, here instead
there are two important differences: (i) there is no equivalent of

the long-ranged van der Waals interactions in our hard disks, with
no mechanism for solidification. (ii) The momentum transfer is
dominated by solvent-mediated hydrodynamic coupling, which is
absent in molecular systems. The importance of hydrodynamic cou-
pling between the particles suggests that similar behavior might be
encountered in wet granular matter.48,49 However, in our system,
the lack of direct particle–particle contacts (and increased ordering)
enables a purely shear-thinning regime.

V. CONCLUSION
We have investigated the rheology of colloidal hard disks con-

fined in a layered fluid configuration under shear and hexagonal
configuration with very weak or no shear in experiment and sim-
ulation. Using a particle-level analysis, we infer the interlayer forces
from drag forces and the driving force exerted by optical tweezers.
Since this system is dissipative and in steady state, balancing the
forces on each layer allows for the measurement of the local viscos-
ity. This is the first experimental measurement of the viscosity of a
hard-disk-like colloidal system under steady shear.

The flow curve is indicative of a dynamic yield stress and shows
that the confined hard disk system exhibits shear thinning at low
shear rates and approximately Newtonian behavior for γ̇τB ≳ 0.1.
The dynamic yield stress is ∼0.1 kBT/a2. We find evidence for a static
yield stress with a lower bound of 1.9kBT/a2. This is remarkably
similar to sheared, unconfined, bidisperse hard disks and bulk hard
spheres. This is by no means an anticipated result as strongly con-
fined systems regularly exhibit very different rheological responses
to their bulk counterparts.1,3,51,52 In our system, there is a change
in structure, in which the system undergoes shear melting, which
we relate to the yield stress. In the future, it would be intriguing
to explore the response of this system to oscillatory shear and to
investigate any yield stress in more detail.

Shear thinning in colloidal hard particle systems is due to
shear-induced layering progressively reducing off-axis interparti-
cle collisions as the shear rate is increased, reducing the viscosity.
By measuring the particle motion perpendicular to the direction
of shear, we show that this is also the case in our system. At a
higher shear rate, radial motion is suppressed without a change in
local density, and therefore, interlayer particle collisions are reduced,
reducing the coupling and dissipation between layers, and therefore
the viscosity.

Colloidal hard disks and spheres under extreme confinement
behave remarkably similarly to their bulk counterparts in both 2 and
3 dimensions and are qualitatively different to systems dominated
by van der Waals interactions, for which viscosity increases mas-
sively on increasing confinement.1–3 We attribute this to an absence
of long-ranged vdW interactions in our system. Furthermore, we
infer from our computer simulations that hydrodynamic coupling
between the particles is the dominant mechanism of momentum
transfer with excluded volume interactions playing a secondary
role. This latter observation suggests that similar behavior might be
observed in wet granular matter, in the case that interactions due to
contacts between particles are not dominant.48,49

We have considered a particular geometry here, where a pop-
ulation of quasi-hard disks are effectively “corralled” by 27 tweezer
particles arranged in a circle. Of course, other geometries are pos-
sible. In the case of planar shear, we expect that the behavior we
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observe would also be found, as one would expect particles to form
layers parallel to the confinement, as is the case here. Depending on
the particle spacing, one might expect coupling between the packing
of free particles and of wall particles.

In the future, it would be attractive to carry out a more complete
inclusion of the HI than we have done here, for example, with lattice-
Boltzmann dynamics or stochastic rotation dynamics. In particular,
it would be useful to enquire whether such a description would
exhibit the shear-thinning behavior seen in the experiments and,
furthermore, to explicitly probe lubrication phenomena neglected in
the simulations we have performed here. It would also be interesting
to develop a better description than the fit we have used to describe
the radial MSDs in Eq. (9).
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APPENDIX A: SIMULATION DETAILS

We perform Brownian dynamics simulations of N particles
interacting via a Yukawa pair potential [Eq. (1)]. In addition, each
of the 27 particles in the outermost boundary layer is exposed
to a harmonic potential mimicking the optical traps employed in
experiment, given by

Vt(∣ri − ri,0∣) =
k
2
∣ri − ri,0∣2, (A1)

where ri is the position of ith particle and ri,0 is the center of its
potential well, with k denoting the trap strength. At each time step
δt, the locations of the 27 harmonic potential minima, ri,0, are trans-
lated a predetermined arc length, l, along the boundary, resulting in
a rotation velocity l/δt. The velocity, and thus the Péclet number, is
controlled by altering this arc length.

The hydrodynamic interactions between colloids of radius a are
modeled on the Rotne–Prager level.86,87 To account for the hydro-
dynamic effect of the planar substrate that is present in experiments,

we first consider Blake’s solution
↔

G B,88 which uses the method of
images to obtain Green’s function of the Stokes equation satisfying
the no-slip boundary condition at z = 0. Furthermore, the hydrody-
namic entrainment effect of the motion of particle j at rj on another

particle i at ri is approximated by a multipole expansion87,96 to the
second order in a leading to the Rotne–Prager level of the Blake
tensor,

↔

G RPB(ri, rj) ≡ (1 + a2

6
∇2

ri +
a2

6
∇2

rj)
↔

G B(ri, rj)

=
↔

G RP(rij) −
↔

G RP(Rij) +
↔

ΔG(Rij),

where rij = ri − rj is the vector between particles i and j and

Rij = ri − rj is the vector between particle i and the image of particle

j at rj = (xj, yj,−zj). The Rotne–Prager tensor
↔

G RP is given as97

↔

G RP(r) = 1
8πη∣r∣ (

↔

I + r⊗ r
∣r∣2 ) +

a2

4πη∣r∣3
⎛
⎝

↔

I
3
− r⊗ r
∣r∣2
⎞
⎠

,

with fluid viscosity η. The last term in Eq. (A2) involves the
Rotne–Prager correction terms to the Stokes and source doublets,
with its (off-)diagonal elements reading as87

ΔGαα =
1

4πη
[−zizj

R3 (1 − 3
R2

α

R2 ) +
a2R2

z

R5 (1 − 5
R2

α

R2 )], (A2)

ΔGαβ =
1

4πη
(3zizjRαRβ

R5 − 5a2 RαRβR2
z

R7 ), (A3)

where α, β ∈ {x, y} and Rα and Rβ correspond to α- and
β-components of Rij, and zi specifies the z-coordinate of particle i.
Note that, in simulations, all particles have the same vertical dis-
tance z from the substrate as adjusted according to the experimental
gravitational length.

The no-slip boundary at the wall alters the particles’ self-
mobilities. We, therefore, employ a Rotne–Prager level self-mobility

tensor
↔

GRPB
self (z) ≡ μRPB

∥ (z)
↔

I to obtain an expression for the depen-
dence of the self-mobility of a colloid separated from a wall by
distance z with the diagonal element being87

μRPB
∥ (z) = μ0(1 − 9a

16z
+ 1

8
(a

z
)

3
) +O(a4), (A4)

and μ0 = 1/(6πηa) describing the Stokes self-mobility.
Finally, the equation for the trajectory ri of a colloidal particle i

obeying Brownian motion after a time step δt reads

ri(t + δt) = ri(t) +
⎛
⎝

N

∑
j=1

↔
μ ijFj
⎞
⎠

δt + δWi, (A5)

where
↔μ ij is given as

↔μ ij =
↔

GRPB
self (zi)δij + (1 − δij)

↔

G RPB(ri, rj), (A6)

which comprises both the self-mobility part and the entrainment
of particle i by the hydrodynamic flow-field created by conservative
forces Fj acting on particle j. This force stems from the pair interac-
tions, V , and for the 27 driven wall particles also from the harmonic
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trap potential V t . The random displacement δWi is sampled from a
Gaussian distribution with zero mean and variance 2D0δt (for each
Cartesian component) fixed by the fluctuation–dissipation relation,
where D0 is the diffusion coefficient.

In the simulations, the length scale is set by κ, the energy scale
by kBT, and the time scale by τ = 1/(κ2D0). The inverse screen-
ing length κ has been chosen as κa = 14.85, where the experimental
value of the radius served as a reference. Consequently, the corral
radius has been set to κR0 = 128 yielding the experimental ratio of
R0/(2a) ≈ 4.31. The high screening at κa = 14.85 together with the
contact potential chosen as V(r = 2a) ≈ 0.85kBT ensures the quasi-
hard-disk-behavior. Another crucial parameter in our system is the
trap strength that has been set to λ = 0.42κ2kBT in order to mimic
the laser trap strength in the experiments. The time step is chosen as
δt = 10−4τ. Our simulations run for up to 8 × 103τ, corresponding to
∼35.5τB with τB being the experimental Brownian time, i.e., the time
one colloid needs to diffuse a length equal to its radius.

APPENDIX B: DETERMINING THE DRAG COEFFICIENT

The analysis described in Sec. II C relies on knowledge
of the drag forces acting on each particle to extract dimensional
forces, and therefore stresses and viscosities. Thus, it is necessary to
know the single particle drag coefficient for our a = 2.5 μm radius
polystyrene spheres undergoing quasi-two-dimensional motion
near the substrate. To this end, we track the diffusive motion of
these particles in the dilute limit, without any optical traps, and
show the resulting mean squared displacement in Fig. 5(a). The
Stokes–Einstein relation says that this is linear in time, with gradi-
ent 4kBT/ζ. Thus, we perform a linear fit to the experimental data in
Fig. 5(a) and obtain an empirical measurement of the single parti-
cle drag coefficient to be ζemp = 1.9,×, 10−7 kg s−1. This represents
an approximate fourfold increase over the Stokes drag coefficient
ζ0 = 6πηa = 4.7 × 10−8 kg s−1 for spheres of 2.5 μm radius in water.

However, it is known that multiple particles moving along a cir-
cular path of radius r each experience reduced hydrodynamic drag
due to the presence of other particles.89 This is the drafting effect.
Ladavac and Grier give an approximate result at the level of the
Stokeslet approximation for the single-particle drag coefficient when

n particles of radius a are equally spaced on a ring of radius r, where
r ≫ a, and near a planar substrate,89

ζwN
ζw0
=
⎧⎪⎪⎨⎪⎪⎩

1 + 3aζw0
8rζ0

n

∑
j=2
[(1 + cos θ1j)(1 − 3 cos θ1j)√

2 − 2 cos θ1j

h
r

+ 8 cos θ1j

(2 − 2 cos θ1j)3/2
h2

r2

+ 6(1 + cos θ1j)(5 cos θ1j − 3)
(2 − 2 cos θ1j)3/2

h3

r3 ]
⎫⎪⎪⎬⎪⎪⎭

−1

. (B1)

This result is truncated at order (h/r)3. Here, θij = (2π/n) ( j − i) is
the angular separation between particles i and j and h is the distance
between the substrate and the particle centers.

Using the radial location of each layer’s peak, ri, and the layer
populations ni, we calculate this modification to the drag coefficient
for our system, assuming h = a + lg , that is, the particles are located
one gravitational length above the substrate. The dependence on
the radius of the circular path and the number of particles suggests
that particles in different layers of our system will experience dif-
ferent drag coefficients. The results of this calculation are shown in
Fig. 5(b). The drag correction calculated using Eq. (B1) for layer 1
is negative, an unphysical result that is a consequence of the fact
that Eq. (B1) is valid only for r ≫ a, which is not true for layer 1
as r1 ≈ a. Therefore, ignoring the invalid layer 1 result, it is evident
that the drafting effect results in a reduced drag coefficient compared
to the dilute limit single-particle wall-corrected drag coefficient ζw0 .
Furthermore, the anticipated dependence of ζwN on radial position
is evident, though weak. If we identify our empirically measured
wall-corrected drag coefficient, ζemp, with ζw0 , then we anticipate that
particles in our system will experience a drag coefficient of ∼0.34ζemp
due to the drafting effect, where 0.34 is the average of ζwN /ζw0 over
layers 2–5, indicated by the dashed line in Fig. 5(b).

Estimating the true drag correction is further complicated by
the fact that our system consists of a series of concentric and
closely interacting layers. Equation (B1) considers a single circular
particle layer in isolation, and therefore cannot be a true descrip-
tion of our system. The effective drag coefficient experienced by

FIG. 5. (a) Mean squared displacement in the dilute limit in the absence of optical traps. Line is linear fit used to extract the empirical drag coefficient. (b) Drag coefficient
correction term of the form in Ref. 89 as a function of radial location, calculated using experimentally measured layered structure. Horizontal dashed line shows the average
over layers 2–5.
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FIG. 6. Time evolution of layer populations ni measured in experiments driven at Pe = 17.5 with confined populations: (a) nconf = 44 and (b) nconf = 48.

a particle in layer i likely depends on the motion of particles in
layers i + 1 and i − 1 in addition to the other particles in layer i.
Therefore, the calculated reduction in drag is really only an order-
of-magnitude estimate of the drafting effect. The sum in Eq. (B1)
is dominated by contributions from particles j = 2 and j = n, which
are the neighboring particles of particle 1. Since the separation
between neighboring particles is approximately the same in all lay-
ers, and since the radial dependence of ζwN is predicted to be weak,
we treat the drag coefficient as being independent of radial position
and equal to ζ = 0.34ζemp. This assumption is necessary to esti-
mate the drag coefficient in layer 1, for which Eq. (B1) is invalid,
as indicated its prediction of a negative drag coefficient in this
region.

APPENDIX C: INTERLAYER HOPPING AT LOWER
POPULATION

Figure 6 shows the time evolution of layer populations in exper-
iments driven at Pe = 17.5 for confined populations: (a) nconf = 44
and (b) nconf = 48. In the more densely packed system at nconf = 48,
the populations of all layers are constant in time, as required for
the rheological analysis described in the main manuscript. When
the population is reduced to nconf = 44, however, particles occasion-
ally move between layers. When layer populations are not fixed,
the rheological analysis as described in the main manuscript cannot
be applied, and so we have focused our attention to the nconf = 48
system.
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53E. C. Oğuz, A. Reinmüller, H. J. Schöpe, T. Palberg, R. Messina, and H. Löwen,
“Crystalline multilayers of charged colloids in soft confinement: Experiment
versus theory,” J. Phys.: Condens. Matter 24, 464123 (2012).
54L. Isa, R. Besseling, and W. C. K. Poon, “Shear zones and wall slip in the capillary
flow of concentrated colloidal suspensions,” Phys. Rev. Lett. 98, 198305 (2007).
55P. Huber, “Soft matter in hard confinement: Phase transition thermodynamics,
structure, texture, diffusion and flow in nanoporous media,” J. Phys.: Condens.
Matter 27, 103102 (2015).
56S. P. Meeker, W. C. K. Poon, and P. N. Pusey, “Concentration dependence of
the low-shear viscosity of suspensions of hard-sphere colloids,” Phys. Rev. E 55,
5718–5722 (1997).
57J. M. Brader, “Nonlinear rheology of colloidal dispersions,” J. Phys.: Condens.
Matter 22, 363101 (2010).
58X. Cheng, J. H. McCoy, J. N. Israelachvili, and I. Cohen, “Imaging the micro-
scopic structure of shear thinning and thickening colloidal suspensions,” Science
333, 1276–1279 (2011).
59K. N. Pham, G. Petekidis, D. Vlassopoulos, S. U. Egelhaaf, W. C. K. Poon, and
P. N. Pusey, “Yielding behavior of repulsion- and attraction-dominated colloidal
glasses,” J. Rheol. 52, 649–676 (2008).
60M. Zackrisson, A. Stradner, P. Schurtenberger, and J. Bergenholtz, “Structure,
dynamics, and rheology of concentrated dispersions of poly(ethylene glycol)-
grafted colloids,” Phys. Rev. E 73, 011408 (2006).
61D. Bonn, M. M. Denn, L. Berthier, T. Divoux, and S. Manneville, “Yield stress
materials in soft condensed matter,” Rev. Mod. Phys. 89, 035005 (2017).
62O. Henrich, F. Weysser, M. E. Cates, and M. Fuchs, “Hard discs under
steady shear: Comparison of Brownian dynamics simulations and mode coupling
theory,” Philos. Trans. R. Soc., A 367, 5033–5050 (2009).
63K. van der Vaart, Y. Rahmani, R. Zargar, Z. Hu, D. Bonn, and P. Schall,
“Rheology of concentrated soft and hard-sphere suspensions,” J. Rheol. 57,
1195–1209 (2013).
64A. Le Grand and G. Petekidis, “Effects of particle softness on the rheology and
yielding of colloidal glasses,” Rheol. Acta 47, 579–590 (2008).
65J. Bender and N. J. Wagner, “Reversible shear thickening in monodisperse and
bidisperse colloidal dispersions,” J. Rheol. 40, 899–916 (1996).
66P. D’Haene, J. Mewis, and G. G. Fuller, “Scattering dichroism measurements of
flow-induced structure of a shear thickening suspension,” J. Colloid Interface Sci.
156, 350–358 (1993).
67B. M. Guy, M. Hermes, and W. C. K. Poon, “Towards a unified description of
the rheology of hard-particle suspensions,” Phys. Rev. Lett. 115, 088304 (2015).
68R. Besseling, E. R. Weeks, A. B. Schofield, and W. C. K. Poon, “Three-
dimensional imaging of colloidal glasses under steady shear,” Phys. Rev. Lett. 99,
028301 (2007).
69P. Schall, D. A. Weitz, and F. Spaepen, “Structural rearrangements that govern
flow in colloidal glasses,” Science 318, 1895–1899 (2007).

J. Chem. Phys. 156, 184902 (2022); doi: 10.1063/5.0087444 156, 184902-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1039/c5sm02917a
https://doi.org/10.1039/c7sm01100h
https://doi.org/10.1016/j.colsurfa.2010.05.034
https://doi.org/10.1021/acs.langmuir.8b00176
https://doi.org/10.1021/acs.langmuir.9b00834
https://doi.org/10.1103/PhysRevLett.101.058301
https://doi.org/10.1063/1.3142502
https://doi.org/10.1103/PhysRevLett.115.098302
https://doi.org/10.1103/physrevlett.112.188101
https://doi.org/10.1103/PhysRevLett.105.025002
https://doi.org/10.1039/c1sm05271c
https://doi.org/10.1039/c5sm01693b
https://doi.org/10.1016/j.cis.2014.09.003
https://doi.org/10.1103/PhysRevE.95.012610
https://doi.org/10.1016/j.cplett.2009.07.059
https://doi.org/10.1088/0953-8984/21/47/474203
https://doi.org/10.1038/nature03805
https://doi.org/10.1103/physrevlett.96.258001
https://doi.org/10.1140/epje/i2003-10153-0
https://doi.org/10.1146/annurev.fluid.40.111406.102142
https://doi.org/10.1146/annurev.fluid.40.111406.102142
https://doi.org/10.1103/physrevlett.94.168001
https://doi.org/10.1103/physrevlett.107.108303
https://doi.org/10.1103/physrevlett.107.188301
https://doi.org/10.1038/nmat3034
https://doi.org/10.1103/PhysRevE.96.050901
https://doi.org/10.1103/PhysRevLett.109.018301
https://doi.org/10.1073/pnas.1515477112
https://doi.org/10.1146/annurev-fluid-010816-060128
https://doi.org/10.1140/epje/i2003-10041-7
https://doi.org/10.1103/PhysRevLett.99.025702
https://doi.org/10.1103/PhysRevE.77.010501
https://doi.org/10.1088/0953-8984/24/46/464123
https://doi.org/10.1103/physrevlett.98.198305
https://doi.org/10.1088/0953-8984/27/10/103102
https://doi.org/10.1088/0953-8984/27/10/103102
https://doi.org/10.1103/physreve.55.5718
https://doi.org/10.1088/0953-8984/22/36/363101
https://doi.org/10.1088/0953-8984/22/36/363101
https://doi.org/10.1126/science.1207032
https://doi.org/10.1122/1.2838255
https://doi.org/10.1103/PhysRevE.73.011408
https://doi.org/10.1103/revmodphys.89.035005
https://doi.org/10.1098/rsta.2009.0191
https://doi.org/10.1122/1.4808054
https://doi.org/10.1007/s00397-007-0254-z
https://doi.org/10.1122/1.550767
https://doi.org/10.1006/jcis.1993.1122
https://doi.org/10.1103/physrevlett.115.088304
https://doi.org/10.1103/PhysRevLett.99.028301
https://doi.org/10.1126/science.1149308


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

70N. Koumakis, A. Panvouxoglou, A. S. Poulos, and G. Petekidis, “Direct com-
parison of the rheology of model hard and soft particle glasses,” Soft Matter 8,
4272–4284 (2012).
71M. Brunner, C. Bechinger, W. Strepp, V. Lobaskin, and H. H. von Grünberg,
“Density-dependent pair interactions in 2D colloidal suspensions,” Europhys.
Lett. 58, 926–932 (2002).
72K. A. Collins, X. Zhong, P. Song, N. R. Little, M. D. Ward, and S. S. Lee,
“Electric-field-induced reversible phase transitions in two-dimensional colloidal
crystals,” Langmuir 31, 10411–10417 (2015).
73R. L. Stoop and P. Tierno, “Clogging and jamming of colloidal monolayers
driven across disordered landscapes,” Commun. Phys. 1, 68 (2018).
74M. Brunner, C. Bechinger, U. Herz, and H. H. von Grünberg, “Measuring the
equation of state of a hard-disc fluid,” Europhys. Lett. 63, 791–797 (2003).
75T. R. Stratton, S. Novikov, R. Qato, S. Villarreal, B. Cui, S. A. Rice, and B. Lin,
“Structure of quasi-one-dimensional ribbon colloid suspensions,” Phys. Rev. E 79,
031406 (2009).
76A. L. Thorneywork, R. Roth, D. G. A. L. Aarts, and R. P. A. Dullens,
“Communication: Radial distribution functions in a two-dimensional binary
colloidal hard sphere system,” J. Chem. Phys. 140, 161106 (2014).
77E. Tamborini, C. P. Royall, and P. Cicuta, “Correlation between crystalline order
and vitrification in colloidal monolayers,” J. Phys.: Condens. Matter 27, 194124
(2015).
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