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Abstract. We highlight certain key achievements in experimental work on molecular, colloidal and granular
glassformers. This short review considers these three classes of experimental systems and focusses largely
on the work of the authors and their coworkers and thus is far from exhaustive. Our goal is rather to discuss
particular experimental results from these classes and to explore universality and specificity across the broad
range of length– and time–scales they span. We emphasize that a variety of phenomena, not least dynamical
heterogeneity, growing lengthscales and a change in structure, albeit subtle, are now well established in
these three classes of glassformer. We then review some experimental measurements which depend more
specifically on the class of glassformer, such as the Gardner transition and some which have been investigated
more in one or two classes than in all, such as configurational entropy and evidence for a dynamical phase
transition. We finally put forward some open questions and consider what could be done to fill some of the
gaps between theoretical approaches and experiments.

Résumé. Nous passons en revue certains des résultats expérimentaux importants concernant les systèmes
vitrifiables moléculaires, colloïdaux et granulaires, sans prétendre aucunement à l’exhaustivité, mais en
nous concentrant principalement sur nos propres travaux et ceux de nos collaborateurs. Notre objectif
est de discuter les résultats expérimentaux pour chacun de ces systèmes en montrant à la fois ce qu’ils
contiennent d’universel, malgré les grandes différences des échelles d’espace et de temps entre ces trois
classes de matériaux, et ce qu’il y a de spécifique. Pour ce qui est des aspects universels, nous montrons
en particulier que la notion d’hétérogénéité de la dynamique, celle de longueur de corrélation croissante,
voire même celle de changement de structure subtil, sont désormais bien établies dans chacune des trois
catégories de systèmes vitrifiables. Ensuite, nous passons en revue certains phénomènes expérimentaux qui
dépendent plus spécifiquement de la catégorie de systèmes considérée, comme la transition de Gardner, et
d’autres phénomènes qui ont été étudiés davantage dans une ou deux des catégories que dans l’ensemble des
classes. Enfin, nous posons quelques questions ouvertes et examinons ce qui pourrait être fait pour combler
certaines lacunes entre les approches théoriques et les expériences.
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1. Introduction

When a molecular liquid is cooled below its melting point sufficiently fast that crystallization
is avoided, it enters the meta-stable supercooled regime. Further decreasing the temperature,
one observes a dramatic slowing down of the dynamics and a corresponding increase of the
structural relaxation time τα over many orders of magnitude. Eventually when τα exceeds 100s,
the system is presumed to fall out of equilibrium and to become an amorphous solid, a glass.
This is the molecular glass transition. The past 30 years have seen a surge of results which
have significantly deepened our understanding of the physics of glassforming systems, including
several breakthroughs: the emergence of a number of theoretical approaches [1–8], advanced
computer simulations [9], and the quantitative experimental study of glassy phenomena in very
different systems, extending the field of research from molecular liquids to colloidal suspensions
and granular assemblies amongst a range of other materials (Figure 1) [10–16].

Exploiting the authors’ contributions in molecular (FL), colloidal (CPR) and vibrated granular
(OD) glassformers, the present review aims at providing a picture of, what we believe are now, well
established experimental results across these material classes. By focussing on our own work, we
make what may be thought of as a first step towards exploring universal behaviour across these
classes of system. We also highlight phenomena specific to each class of system. We then move on
with formulating simple, yet key open questions, in the light of existing theories, when confronted
by these results. Finally we discuss some possible strategies to fill the gaps between theoretical
approaches and experiments.

colloidsgrains molecules
lengthscale

10-10 m10-8 m10-6 m10-2 m 10-4 m

timescale τ010-12 s10-6 s1 s1 s 10-2 s

limit of
thermal
motion

102 s3 yrs3x106 yrs3x106yrs 3x104 yrs
timescale τ

α
(Tg,φg)

Figure 1. Classes of glassformers across space and time. Shown as the bottom axes are
two corresponding timescales τ0, the microscopic relaxation timescale pertinent to the
high temperature (low packing fraction) case and τα(Tg ,φg ) = 1014τ0 the alpha relaxation
time equivalent to the glass transition of molecules. These two lower axes thus differ
in magnitude by 1014. The lengthscales corresponding to molecules range from small
molecules to large biomolecules whose diameter may reach tens of nm, colloids which
range from tens of nm to microns and grains from 10 microns to macroscopic sizes. Note
that granular systems are athermal, the timescale depends on the driving and thus is not
fixed, here we provide indicative values. The photoelastic disk representing grains is taken
from [17].
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We shall largely restrict ourselves to the approach to the glass transition in equilibrated su-
percooled liquids where, by equilibrated we mean that the observation timescale is much longer
than the relaxation time. We refer the interested reader to reviews on ultrastable glasses [11] and
non–equilibrium phenomena such as aging [18] and shear [19]. We shall furthermore consider
the three classes mentioned above; we refer the interested reader to reviews on oxide [20], poly-
meric [21] and metallic [22] glassformers.

2. Motivation

2.1. Scientific questions opened by the glass transition

We start by briefly outlining the scientific questions that the experimental studies we review are
intended to address, referring the reader to more detailed reviews as appropriate, starting with a
general review of the glass transition [23].

It is a basic tenet of materials science that the macroscopic properties of a material are, ul-
timately, encoded in its structure at the microscopic level. Glassforming systems challenge this
viewpoint, as their microscopic structure, when characterized by the pair correlation function,
exhibits very little change upon approaching the glass transition; yet they are as solid as any con-
ventional crystalline solid. Although higher–order correlation functions may better characterize
the structural evolution in supercooled liquids approaching the glass transition [24], there re-
mains the more profound question of what actually leads liquids to solidify without crystallis-
ing. Indeed, it has been said that “there are more theories of the glass transition than there are
theorists who propose them” [25]. From the experimental perspective that we pursue here, the
challenge boils down to (i) identifying those theoretical approaches which correctly describe the
experimental observations and (ii) proposing new experimental observations, which allow for a
better discrimination amongst existing theories. Here, it is reasonable to separate these theories
into two general approaches – that the glass transition is predominantly driven either by thermo-
dynamics or dynamics [26].

The thermodynamic approach to the glass transition pertains to theories, such as the Random
First–Order Transition (RFOT) theory [2], which invoke a thermodynamic transition to an “ideal
glass” state, as the underlying cause for the dynamic slowdown. The concept of the ideal glass
has its roots in the work of Kauzmann [27], who predicted that, the configurational entropy of
supercooled liquids (that part of the entropy which remains after vibrational contributions are
excluded) would fall below that of their crystal at a finite temperature Tk . as shown in Figure 2(a).
In such theories, the relaxation occurs via cooperatively rearranging regions (CRRs) [28]. As the
system is cooled, their size grows while their timescale increases massively. Approaching Tk , the
time to relax diverges and the system falls out of equilibrium [23, 24].

The alternative scenario, is that the glass transition is a predominantly dynamical phenome-
non. One such theory is Dynamic Facilitation [4,5] which posits that it is a dynamical phase tran-
sition between active and inactive trajectories that is responsible for the glass transition. In this
scenario, the elements of relaxation are short–lived “pockets” of mobility, so–called excitations,
which are microscopic in time- and length-scale, quite unlike the CRRs mentioned above.

Despite their profound conceptual difference, both scenarios predict a dramatic increase of
the relaxation time, as well as dynamic heterogeneity, the phenomenon of different regions of a
supercooled liquid exhibiting different relaxation times. Hence the challenge for discriminating
amongst them, not withstanding the possibility that the different relaxation mechanisms could
hold simultaneously, or even that other mechanism may also exist.

Another phenomenon investigated recently is the Gardner transition, originally formulated
by Elizabeth Gardner in the context of spin glasses. This is a transition between two kinds
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of glass, and it was predicted from Replica theory that structural glasses could also exhibit
this phenomenon [29, 30]. We review experimental explorations of the Gardner transition in
Section 5.3.

2.2. A universal slowing down

Besides supercooled liquids, another class of glassforming systems is colloidal suspensions,
which exhibit phase behaviour analogous to atomic and molecular systems due to their Brownian
motion [12, 13]. Here experiments are typically carried out at room temperature, however the
interactions between the particles may be changed, for example by the addition of polymer [31,
32]. In such colloid-polymer mixtures, the glass transition may then be approached by adding
polymer, which plays the role of an inverse temperature. This is then analogous to reducing
temperature as is done in molecular systems. Such experiments either move along dilution
lines in the phase diagram [32], or use constant colloid volume fraction [33]. The former, while
convenient, conserve neither volume nor (osmotic) pressure. The latter may encounter the
spinodal line to colloidal liquid–gas phase separation, in which case the system undergoes
gelation, a profoundly different scenario of dynamical arrest compared to vitrification [33, 34].
An easier way to approach the glass transition in colloidal systems is thus to increase number
density, or volume fraction (i.e. packing fraction) φ [35]. While some studies have considered
charged colloids with a long–range repulsion, which form a so–called Wigner glass [36, 37], the
vast majority have considered hard sphere–like systems [38–40], and these will form the main
focus of our interest. An elegant colloidal system to explore glassy behaviour is microgels, whose
effective diameter (and thus effective volume fraction) can be controlled in-situ, thus enabling
an approach to the glass in a single sample, rather than necessitating a new sample for each
state point as is the case with conventional hard sphere systems [13]. Similarly to molecules,
crystallisation in colloids must be avoided, often by using a system which is size polydisperse.

The 1990s saw a massive growth in the field of granular matter, leading to work which showed
strong experimental evidence of glassy dynamics in dense granular media under low mechanical
excitation [16]. The purpose of the mechanical excitation is to supplement for the absence of
thermal motion. A major challenge of such experiments is to ensure homogeneous excitation,
in order to best mimic Brownian motion and avoid any sort of convective motion. Interactions
between particles in such systems are typically close to hard, and therefore they are analogous
to colloidal hard sphere–like systems. Here also the system is size polydisperse, often simply
bidisperse, and the control parameter of the dynamics is the packing fraction, φ. The majority of
the work uses effective two–dimensional systems. These can be compared with work with colloids
which can be either 3D or quasi-2D [41–46].

As Figure 1 makes clear, the microscopic timescales pertinent to relaxation in the liquid, be it
molecular, colloidal or granular, are massively different. In molecular liquids, the microscopic
timescale τ0 ≃ 10−12 s corresponds to the thermal motion of the molecules. For colloids, the
fundamental timescale is set by the Brownian time to diffuse (say) a diameter

τ0 = τB = 3πησ3

kB T
(1)

where η is the solvent viscosity, σ is the particle diameter and kB T is the thermal energy. Now
the size range of colloids in practice is from 10 nm, to > 1µm, so τ0 = τB is already 103 to
1013 larger. Furthermore, the dynamics of the molecules are Newtonian (at a classical level)
whilst those of the colloids are Brownian. The case of granular media is even more extreme:
millimetre– or centimetre–sized grains are too big to exhibit significant thermal fluctuations and
their erratic motion requires an external source of vibration. As such they obey non equilibrium
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Figure 2. Roadmaps to the glass transition: the configurational entropy and the “Angell
plot”. (a) The configurational entropy, Sconf, of liquids falls faster than that of crystals as
a function of temperature or inverse reduced pressure and fall below that of the crystal
at some temperature Tk . Tg is the operational glass transition temperature where the
structural relaxation time reaches 100 s in molecular systems. Depending on the cooling
rate, around this temperature the system falls out of equilibrium, as indicated by the
coloured lines. Tmct is the mode-coupling crossover [8]. Tm is the melting point. The two
branches of the dynamical phase transition of dynamic facilitation are indicated. The
active phase is effectively indistinguishable from the normal liquid. The inactive phase
has a lower configurational entropy, which lies close to, but is presumably slightly larger
than, that of the crystal (see Section 4.4) [47]. The lower critical point of the active and
inactive phases is thus bounded by the liquid and crystal and lies close to Tk . Based on [47].
(b) In the Angell plot representation the relaxation time is plotted as a function of inverse
temperature 1/T for molecular systems and reduced pressure Z for colloids and grains.
Data for molecular systems silica and and ortho-terphenyl (OTP) are taken from [24], for
glycerol from [48], for colloids of diameter 584 nm from [49] and we computed for the
purpose of the present review the data for grains. Data for silica is fitted with an Arrhenius
law (a straight line in this representation), other systems are fitted with the Vogel-Fulcher-
Tamman expression (Eq. (2)). In the case of 3d hard sphere–like colloids, and 2d hard disc–
like grains, the reduced pressure Z is determined from the volume fraction φ using the
Carnahan Starling relation [49,50] and the equilibrium equation of state for bidisperse hard
discs [51] respectively. By convention Tg and Zg are set such that τα/τ0 = 1014. Shading
denotes the dynamical regimes accessed by the three different classes of glassformer.

steady state dynamics. Given these differences, it is all the more fascinating to consider the
universal slowing down of the dynamics, emphasized previously for molecular and colloidal
systems [52–54] and here with granular systems included, illustrated by the so-called “Angell
plot” (Figure 2) [55], where the logarithm of the relaxation time τα, scaled by a microscopic time
scale τ0, is plotted as a function of the inverse temperature Tg /T , for molecular glassformers,
the reduced pressure Z /Zg , for both hard sphere–like colloidal suspensions and mechanically
shaken granular assemblies1. Here the reduced pressure Z = P/(ρkB T ) where P is (osmotic)
pressure and ρ is the number density. This observation has driven an intense experimental effort

1Note that in the case of the colloidal systems, the reduced pressure in question is that of the effective one–component
colloid system with contributions from smaller components such as microscopic ions integrated out [31].
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in investigating similarities and differences amongst these systems and probing the robustness of
various glass forming scenario, by comparing their behavior. Now, if we are to suppose some kind
of universality, then the timescale of the operational glass transition τα(Tg ) = 1014τ0 should also
vary dramatically. That is to say, one may introduce a scaled relaxation time τα/τ0 to compare
between different classes of glassformer.

In this way, we arrive at τmol
α (Tg ) = 100 s, τcoll

α (φg ) ∼ 1014 s and τgran
α (φg ) ∼ 1014 s for molecules,

and micron–sized colloids and grains respectively. As shown in Figure 1, it is important to
consider the differences in these timescales in the analysis of experimental data. For example, in
Figure 2(b) we see that while the molecular data indeed covers 14 decades of change in relaxation
time, the colloidal and granular data is rather more modest: if the data for micron-sized colloids
were also to reach 14 decades of change in relaxation time, then the experiment would need to
have run for τcol,gran

α (φg ) = 3 million years, which is rather challenging to put it mildly! Therefore,
any discussion of universality in glassy behaviour needs to consider this massive disparity in
absolute timescale. One consequence of this is that in practise, relative relaxation times in
experimental studies with micron–sized colloids and grains are at best τcoll,gran

α (φg ) ∼ 107.

2.3. Opposite theories can account for the viscous slowing down

We now briefly illustrate what was announced in Section 2.1, namely the fact that opposite
theories are able to account for the behavior of the relaxation time (which is the most basic
property of glassforming systems). Figure 2(b) shows that the relaxation time of molecular,
colloidal and granular systems may be fit with the VFT expression

τα = τ0 exp

[
D

T −T0

]
, (2)

with T being replaced by 1/Z in the cases of colloids and granular media. T0 (≃ TK ) is rather
lower than the experimental glass transition temperature Tg and D is a measure of the fragility
– the degree to which the relaxation time increases as Tg is approached. Note that the case of
Arrhenius dependence (e.g. of silica and other “strong” glasses) is rather poorly described by (2).

In the case of colloidal systems, earlier work found a good agreement with mode–coupling
theory [58, 59] leading to a general acceptance of MCT in the colloid community. However,
as shown in Figure 3(a), later work which accessed a greater change in scaled relaxation time
τα/τ0 found that, like molecular glassformers, colloidal systems do in fact relax if supercooled
past the “transition” of standard MCT [49, 56, 60]. On the theoretical side, further developments
of MCT could in principle address this issue [7, 61]. The VFT fit can be rationalized from the
thermodynamic approaches to the glass transition (see Section 2.1 and the review of Cavagna [26]
for an interpretation of T0 ≈ TK ) and therefore support the RFOT scenario. Dynamic faciliation
(DF) theory offers an alternative description with a prediction for the relaxation obeying the so–
called parabolic law:

τα = τon exp

{
J 2

(
1

T
− 1

Ton

)2}
(3)

where τon is the relaxation time at the onset temperature Ton of glassy dynamics. J is a system–
specific “coupling” parameter related to the spin models that DF is inspired by [4]. One sees in
Figure 3(b, c) that the parabolic law provides a fit to the experimental data as good as that of the
VFT equation both in molecular and colloidal systems (with T replaced by 1/φ in the case of the
latter). The mechanically shaken granular assemblies do not explore enough decades of change
in the relaxation time to be of relevance here. In other words, existing experimental data about the
relaxation time cannot discriminate amongst conceptually incompatible theoretical approaches.
For a more detailed analysis of molecular glassformers, see [62, 63].
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Figure 3. Experimental tests of alternative theoretical descriptions of the increase in relax-
ation time. (a) Relaxation beyond the mode–coupling crossover in colloidal experiments.
Main panel: real space measurements with hard sphere like colloids (red and cyan data
are experiments, pink data are computer simulation). Reproduced from [49]. Inset: Light
scattering measurements, reproduced from [56]. Both these data sets show relaxation past
the MCT crossover (φmct ≈ 0.58) as shown by the blue curves. Fits with the VFT expression
(Eq. (2)) provide much better agreement. (b) The parabolic law of Dynamic Facilitation
theory Eq. (3) fitted to a wide range of molecular glassformers. Reproduced from [57].
(c) The parabolic law fitted to data for hard sphere like colloids tracked in real space. Data
from [49].

3. Spatio-temporal characterization of the glass transition

Because the behavior of the relaxation time, as a function of the control parameter, does not
discriminate between competing theories, it is worth attempting to characterize relaxation events
both in space and in time. This requires specially designed observables, and specially designed
experimental techniques, that we review now. This will allow to get a fine characterization of the
so-called Dynamical Heterogeneities (DH’s) which are the core of supercooled dynamics, with
strikingly common features between molecular, colloidal and granular systems, as we will show
in the end of this section.

3.1. Tayloring quantities relevant for spatio-temporal characterisation

We now briefly introduce the main dynamical quantities introduced to characterize the dynamics
of our three classes of system when approaching the glass transition. We refer the reader to a
detailed discussion of these quantities in [23]. From a conceptual point of view, a natural thing to
do is to introduce a mobility field

c(r, t ,0) =∑
i

ci (t ,0)δ(r− ri ), (4)

where, ri (t ) is the position of particle i at time t and ci (t ,0) is a measure of how much it has
moved between time 0 and time t . The spatial average of the mobility field,

Ĉ (t ,0) = 1

V

∫
drc(r, t ,0), (5)

describes how much a given configuration of the system has evolved between 0 and t . Fur-
ther averaging over the realizations, or the thermal statistics, leads to the temporal correlator
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C (t ) = 〈Ĉ (t ,0)〉 describing the relaxation of the system. This correlator typically exhibits a
stretched-exponential decay which, being fitted by the Kohlrausch–Williams–Watts (KWW) law

C (t ) = A exp
(
−(t/τα)b

)
(6)

with 0 < A ≤ 1 and 0 < b ≤ 1, allows one to obtain the relaxation time τα.
In order to examine spatial heterogeneities of the dynamics, one considers the spatial correla-

tor of the mobility field:

G4(r, t ) ≡ 〈
δc(0,0,t)δc(r,0,t)

〉
(7)

which is termed a four-point correlator (here δc = c − 〈c〉), because it examines the two point
spatial correlation of a field that already is a two times observable. If there is a dominant
lengthscale ξ4 controlling the dynamical heterogeneities, which would grow when approaching
the glass transition, one expects by analogy with critical phenomena that

G4(r, t ) ≃ 1

r p e−r /ξ4(t ). (8)

where p is some critical exponent, i.e. where G4 is scale invariant up to r ≈ ξ4. It is also natural to
define the susceptibility associated with such spatial correlations:

χ4(t ) ≡ ρ
∫

drG4(r, t ) (9)

which is easily related to the fluctuations of Ĉ :

χ4(t ) = N
〈
δĈ 2〉 . (10)

The above definitions follow exactly those used to describe standard critical phenomena, except
that the field of interest here is a mobility, instead of a static quantity such as, for instance, the
local magnetization. There is thus no surprise, at least for molecular liquids and colloidal sus-
pensions, in the fact that the susceptibility can also be computed as a response function, a point
of significant importance for experimental purposes. As a matter of fact, it was demonstrated ex-
perimentally that it is also the case for the mechanically agitated grains [64].

The choice of the mobility field naturally depends on the experimental conditions. Typically
a scattering experiment would consider ci (t ,0) = exp(i q(ri (t )− ri (0))), while in real space one
usually prefers to use ci (t ,0) = exp(−(ri (t )− ri (0))/a)2 where a or 2π/q is the microscopic length
characterizing a relaxation event at the particle scale and is of the order of a fraction of the particle
diameter or interaction range. It is then straightforward to relate C (t ) with the self intermediate
scattering function, that is the Fourier transform of the distribution of the particle displacements,
also called the self van Hove function:

Fs (q, t ) = 1

ρ

〈
ρq(t )ρ−q(0)

〉= ∫
dr Gs (r, t )exp

(−i q · r
)

(11)

Similarly, for the second choice of ci , C (t ) is related to the self part of the so called overlap
function:

Q(a, t ) =
∫

drdr′
〈
ρ(r, t )wa(r− r′)ρ(r′,0)

〉
, (12)

with wa(r− r′) = e−(r−r′)2/a2
.

In all cases, for a given temperature T , or packing fraction φ, the correlations, hence the
susceptibility, attain a maximum at a certain t = τh ≃ τα, and then die away. The maximum of
χ4 corresponds to correlated relaxations involving a number Ncorr,4 of particles, where Ncorr,4 ∝
Maxt (χ4(t )). One should however keep in mind that Ĉ , and hence χ4, depend on the probe
length a or 2π/q and in some cases a careful analysis of this dependence is necessary [65, 66].
Furthermore the knowledge of the prefactor A(t ) in eq. (8) is necessary, if one is to obtain absolute
values for Ncorr,4.
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3.2. Measurement techniques for DH characterisation

In this short review, we will consider three experimental techniques that can be used to access
the quantities described in the previous section and that are pertinent to the results we shall
discuss: real space imaging, light scattering, and dielectric response. Real space imaging typically
applies to micron-sized colloids and 2d granular assemblies, light scattering applies to sub-
micron colloidal suspensions and molecular liquids, adapting the light wavelength to the size of
the constituents, and dielectric response applies to molecular liquid. We refer to Refs. [67–69] for a
description of light scattering applied to molecular liquids, or small colloids [70], and concentrate
here on the other techniques.

3.2.1. Real space imaging in colloidal suspensions and granular assemblies

Whether it be through the use of microscopy or macroscopic imaging techniques, real space
imaging gives access to the positions ri of the individual colloids or grains at a certain frame rate,
which is specific to the system and state point of interest, so–called particle–resolved studies
(PRS) [14]. Then tracking algorithms allow one to reconstruct the particle trajectories ri (t ) and
one ends up with experimental data [14, 71] akin to those obtained from molecular simulations,
albeit with the addition of experimental uncertainties.

These uncertainties take a variety of forms. First is the tracking error in the coordinate
position. While (due to their larger size), this is just 1% of the diameter or even less in the
case of grains, for colloids this is typically 5% of the diameter. One may need to add errors
to coordinates obtained from simulation to obtain agreement with experimental data [14, 72,
73]. Other issues include missing particles and “ghost particles” where the tracking algorithm
erroneously identifies a particle which is not present in the experiment. These missing particles
and “ghost particles” can account for up to 5% of the total particles in poorer quality data.

From the instantaneous position of the particles, one readily computes structural quantities,
such as the pair correlation function, or any local structural order parameter, characterizing
for instance the hexatic order in 2d or higher–order structures in 3d via bond–orientational
order parameters [74] or geometric motifs thought to be pertinent to the glass transition [75],
and their spatial correlations. One can also extract the dynamical properties of the system as a
direct implementation of the methods described in Section 3.1 to obtain Q(a, t ) and χ4(a, t ) as
illustrated in Figure 4. We refer the reader to [76, 77] for more details.

Particle–resolved studies of colloidal systems requires particles of around 2-3 µm in diame-
ter, while light scattering can use particles of 200 nm diameter or less. Inspection of Eq. (1) and
Figure 1 indicated that using smaller colloids can lead to much higher τα/τ0 for a given mea-
surement time. Nano–particle resolved studies uses recent developments in super–resolution mi-
croscopy [78] to image particles around ten times smaller in diameter than conventional PRS
which allows access to values of τα/τ0 around 1000 times larger than conventional approaches.

3.2.2. Light scattering in colloidal suspensions

The majority of the light scattering work on colloidal glassformers has used dynamic light
scattering (DLS), and this will form the focus of our discussion. We refer the reader to [79] for
a more detailed discussion and to [76] for a precise exposure to the subtleties of DLS, which we
here briefly summarize for the purpose of completeness.

DLS probes the temporal fluctuations of the refractive index of the colloidal suspension, where
the scattering occurs because of the mismatch between the index of refraction of particles and
that of the solvent. A central advantage of DLS is that it probes a very large number of particles
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Figure 4. Measuring relaxation and dynamic heterogeneity in real space from co–ordinate
data. (a) Intermediate scattering functions for a colloidal system at the volume fractions
listed. The wavevector is close to the first peak of the static structure factor. Reproduced
from [49]. (b) Relaxation curves and (c) Dynamical heterogeneities evaluated via χ4, ex-
tracted from real space imaging of a granular experiment at one given packing fraction,
colors correspond to different choice of the probing length a; there is one length-scale for
which dynamical heterogeneities are best captured. Adapted from [65].

simultaneously, yielding very good statistics. Experimentally, one measures the temporal corre-
lations of the light intensity I (t ) scattered at a wave vector q = 4π/λsin(θ/2), where θ is the scat-
tering angle and λ is the wavelength in the solvent of the incoming laser beam:

g2(t ) = 〈I (t )I (0)〉
〈I (0)〉2 , (13)

where the average is a temporal average, assuming ergodicity, a condition which becomes even-
tually difficult to ensure close to the glass transition. Assuming single scattering, the intermediate
scattering function (ISF) simply relates to g2:

F (q,τ) ≡ 1

N

〈∑
j ,k

exp
{−i q · [r j (t +τ)− rk (t )

]}〉=
√

c
[
g2(τ)−1

]
, (14)

where c ≥ 1 depends on the optics. One notes that DLS provides access to the full ISF, but it is
possible to reduce it to its self part by making the contribution of the j ̸= k terms vanish from
Eq. (14). To enrich the temporal average, which can be limited, especially close to the colloidal
glass transition, it is common to use a camera as a multi-pixel detector and also average over the
different pixels, which correspond to statistically independent speckle.

In the above procedure, the light intensity is averaged over both space and time and no
information can be extracted on dynamical heterogeneity. One way to go further is the so-called
Time Resolved Correlation (TRC) [80], where the scattered light intensity is averaged over the
pixels only, leading to

cI (t ,0) =
〈

Ip (t )Ip (0)
〉

p〈
Ip (t )

〉
p

〈
Ip (0)

〉
p

−1, (15)

a formal equivalent of Ĉ (t ,0), and the usual intensity correlation function g2(τ)−1 is the temporal
average of cI (t ,τ), exactly as C (t ) = 〈Ĉ (t ,0)〉 (Eqs. (4) and (5)). Having access to Ĉ (t ,0), one
extracts the dynamical susceptibility by computing its temporal variance, following Section 3.1.
The second way to access spatial correlations is Photon Correlation Imaging (PCI) [81]. Here
spatial resolution results from the modification of the collecting optics, using a diaphragm to
limit the range of q vectors accepted by the detector, in such a way that each pixel of the sensor
is illuminated by light issued from a small region of the sample and scattered in a small solid
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angle associated with the same, well defined scattering vector. Dividing the images in small sub-
regions, one then accesses directly to a local measure of the temporal decorrelation, which serves
as the mobility field to compute G4 or χ4.

3.2.3. Dielectric response in molecular liquids

In molecular liquids, except in special cases [82], it is impossible to perform real space imaging
to reconstruct particle trajectories as in Section 3.2.1. Moreover single-component liquids can be
obtained with a high degree of purity, yielding the chemical uniformity to be so good that the
very existence of dynamic heterogeneity (DH) is far from obvious a priori. However, in the 1990s,
several kinds of sophisticated experimental techniques established that there exists a significant
fraction of molecules relaxing more slowly than the average, i.e. that there is a distribution of
molecular relaxation times in single component liquids [10]. We refer the reader to Ref. [83] for a
review, and for the detailed explanations about the fact that most of these experiments probe the
heterogeneous character of the dynamics in time but cannot access the associated spatial scale.
The two exceptions to this lack of spatial information about DH’s are two experimental tour de
force, namely 4D-NMR [84] and Atomic Force Microscopy experiments [85], where the typical size
of DH’s was estimated to be a few molecular diameters [84] close to Tg with a trend to increase
upon cooling.

However, less specific methods are needed for a systematic study of DH. Two main methods
were developed based either on linear responses or on nonlinear responses. We shall briefly
explain each by using the language of dielectric response ϵ ≡ 1 + χ, where one monitors the
polarisation P = ϵ0χE stemming from the rotation of molecules submitted to an external electric
field E of angular frequency ω. Here ϵ0 is the vacuum dielectric constant.

Figure 5(a) shows typical spectra that one obtains, at various temperatures, for the imaginary
part ϵ′′ ≡χ′′1 where χ1 is the linear complex dielectric susceptibility. We shall not discuss in detail
the features appearing at high (excess wing or β peak) or very high frequencies and shall focus on
the α relaxation showing up as a peak around the frequency fα related to the typical molecular
relaxation time τα = 1/(2π fα). With respect to the ideal case of non interacting molecules, the
α peak in supercooled liquids is asymmetric in frequency, which has been interpreted as an
indication that a large distribution of relaxation times τ exists at each given temperature T .
Let us stress that this distribution is not a proof of DH; it could be compatible with relaxation
being the same everywhere in the liquid and occurring as a stretched exponential in time [83].
However the temperature dependence τα(T ) can be related to DH’s since it was theoretically
established [86–88] that TχT ∝|∂ lnτα/(∂ lnT )| is an estimator of Ncorr(T ). Physically this comes
from the fact that the larger Ncorr, the higher the activation energy, and the longer τα.

The second method involves non linear dielectric susceptibilities, for example the third order
χ3. The definition of χ3 at any frequency is quite involved (see [83, 89–91]), but it boils down to a
very simple expression in the static case where

χ3 ≡ lim
E→0

[
P/ϵ0 −χ1E

E 3

]
. (16)

Contrary to its linear counterpart χ1(ω), the nonlinear spectrum χ3(ω) is qualitatively different
in supercooled liquids and in an ideal non interacting gas of dipoles as is taken to be the case
for a normal liquid. This is illustrated in Figure 5(b) where the moduli of the responses of order
k in the field are compared for supercooled glycerol: the linear k = 1 spectrum varies monoton-
ically in frequency, contrarily to nonlinear responses which exhibit a hump in frequency, which
increases with k. Physically, this can be understood by considering an amorphously ordered do-
main containing Ncorr molecules. Since the supercooled liquid is assumed to be comprised of in-
dependent domains, one obtains its polarisation by adapting the formula valid for an ideal gas
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Figure 5. Linear and nonlinear dielectric spectra in molecular supercooled liquids.
(a) Adapted from [48]: For glycerol, wide frequency range dielectric spectrum for the imagi-
nary part of the linear dielectric susceptibility: the relaxation frequency fα -where ϵ′′ ≡χ′′1 is
maximum- strongly varies in T . Note that, because χ′1 supersedes χ′′1 around fα, the mod-
ulus |χ1| of the linear response has no peak and continuously decreases when frequency
increases –see the green points in part b of this Figure– (b) Adapted from [89]: Modulii of
the linear (k = 1), third order (k = 3) and fifth order (k = 5) susceptibility in glycerol at 204K
which amounts to T /Tg ≃ 1.08 since in glycerol Tg ≃ 188K. The trivial case of an ideal gas
of non interacting molecules yields monotonically decreasing responses when increasing
frequency, at all order k in the field.

P/ϵ0 = (µ/a3)L(µE/(kB T )) where L is the Langevin function, a3 the molecular volume, and µ the
molecular dipole. Using this formula for each domain amounts to the two following renormali-
sations: a3 → Ncorra3 and µ→p

Ncorrµ, where the square root comes from the amorphous na-
ture of the order, yielding molecular dipoles pointing in (seemingly) random directions. Plugging
this into the expansion of the Langevin function directly yields χk ∝ N (k−1)/2

corr , which explains the
qualitative difference between the linear spectrum (which is blind to amorphous ordering) and
the non linear spectra, see for example [89, 91, 92] for detailed explanations. In particular, these
references compare the temperature dependence of χ5 and of χ3 from which one deduces that
the amorphously ordered domains close to Tg are compact objects, i.e. their fractal dimension
d f is found to be that of the embedding space. Though experimentally challenging, nonlinear
responses have been achieved by several teams [90, 93–95] on various liquids, and even at high
pressures [94].

3.3. Dynamical heterogeneities: universal features unveiled

Dynamical heterogeniety, in which some regions of supercooled liquids exhibit much fast re-
laxation than others was discovered in the 1990s [96]. This motivated a surge of interest for a
quantitative analysis of dynamical heterogeneities. The first work to directly identify DH in col-
loids that we are aware of was that of Rice and coworkers, who used a 2d system to explore
string–like motion similar to early computer simulations and also explored the shape of dy-
namically heterogeneous regions [41–44]. Figure 6 shows (upper row) some DH’s observed in (a)
a molecular glass (AFM dielectric spectroscopy on a PVac film, [85]), (b) a colloidal system (confo-
cal microscopy, [97]), and (c) a granular system ([98]). In each of these three systems, one directly
observes that the dynamics is very heterogeneous both in space and in time.

As explained above, in granular experiments, the dynamic susceptibility χ4(t ) can be directly
monitored, and one finds, see Figure 6(f), that its maximum in time increases with the area
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Figure 6. Local and global characterization of Dynamical Heterogeneities (DH’s) in molecu-
lar, colloidal and granular glass forming systems. Upper (resp. lower) row: local (resp. global)
measurements of DH’s in (a ,d) a molecular glass [85, 86], (b, e) a colloidal glassformer [97,
99], (c, f ) a vibrated granular glassformer [100, 101]. Adapted from [85, 86, 97, 99, 101]. In (a)
the experiment was carried out on a glassy polymer (PVAc), while (d) corresponds to glyc-
erol.

fraction φ. In other kinds of glassforming systems, because measuring χ4(t ) is either difficult
(colloids) or impossible (molecular glassformers), earlier works [86–88, 99] have used proxies
W (t ) of χ4(t ), as illustrated in Figure 6(d, e). More precisely in colloids, one has used in Ref. [99]
Wcol(t ) ≡< ρ > kB T (φ∂Fs (q0, t )/∂φ)2 where Fs (q0, t ) is the self part of the scattering function
taken at the first peak q0; while in molecular liquids a good proxy is

Wmol(t ) ≡
√

kB

∆Cp

∣∣∣∣T ∂χN

∂T

∣∣∣∣ (17)

where ∆Cp is the jump of the molecular specific heat at Tg ,

χN = χ1(ω)

χ1(ω= 0)
(18)

and time t = 1/ω. Figure 6(d, e, f) illustrates that in the three kinds of glassforming systems,
the maximum with respect to time of χ4(t ), or of its proxies Wcol, Wmol, does increase as one
approaches the glass transition: this means that the size of the DH increases as their relaxation
time (tremendously) increases to the macroscopic value of 100s at the glass transition.

Beyond this important qualitative result, a quantitative comparison between molecular, col-
loidal and granular glassforming systems requires to take care of the fact that the conserved quan-
tities are not the same in these three systems. This subtle point has been carefully investigated
theoretically [87, 88] with the important outcome that the derivative with respect to φ has to be
squared in Wcol(t ) contrary to its counterpart ∂/∂T in Wmol(t ). This is why in Figure 7 where we
compare molecular, colloidal and granular systems we shall essentially compare Maxt Wmol for
molecular glassformers,

√
Maxt Wcol for colloids, and

√
Maxtχ4 for granular systems. Defining

|TχT | ≡
√

kB

∆Cp

∣∣∣∣∂ lnτα
∂ lnT

∣∣∣∣ (19)
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Figure 7. Comparison of the behavior of N ′
corr evaluated in various glassformers and/or

various techniques. Adapted from Ref. [86], [102] and [100, 101]. Increase of N ′
corr when

approaching the glass transition (see text for details on the normalization and the precise
quantities described by N ′

corr). This plot combines 2d grains and a colloidal system (“Hard
Spheres”), as well as 12 molecular liquids where one has set either (open symbols) N ′

corr ∝
|TχT | or -full symbols- N ′

corr ∝ |X Max
3 | with |X Max

3 | the maximum of the hump of the
(dimensionless) third order susceptibility (see refs [89, 91, 92] for the precise definitions).
Two numerical studies (Lennard-Jones and BKS Silica) are also included.

one readily shows [86] that Maxt Wmol is proportional to |TχT |, with a prefactor of order 1. The
latter can be dropped since one cannot be sure of the normalisation prefactor when deriving
χ4 and its proxies. This is why, in Figure 7, so as to achieve the best possible collapse [86] we
have chosen, for each system, two multiplicative prefactors, one for τ0 and another one for Ncorr,
which is thus relabelled N ′

corr. For most systems this factor is close to unity (in any case it is
smaller than 10). Considering the extreme variety of the systems plotted in Figure 7, the quality of
the collapse is impressive and suggests that some of the universal aspects of the glass transition is
captured with this set of data. Finally, the fact that the points drawn from nonlinear susceptibility
(full symbols) superimpose on the trend emerging from the |TχT | analysis is a very strong check
of internal consistency of all these data-sets.

We emphasize that for molecular systems the absolute value of Ncorr is not known because
of the normalisation prefactor issue discussed above [86]. This contrasts with granular [64] and
colloidal systems [49,60], where a direct measure of the dynamical correlation length can now be
obtained, as shown in Figure 9(c) in the case of colloidal glassformers. We shall discuss this more
in depth in (the end of) the next section.

4. Structure

As stressed in the Motivation (Section 2) and illustrated on Figure 8, the microscopic structure
of glassformers, when characterized by the pair correlation function, exhibits little change upon
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approaching the glass transition. Higher-order correlation functions may however better charac-
terize the structural evolution in supercooled liquids approaching the glass transition. The role of
local structure in the glass transition can be traced to the work of Frank [105] who used energetic
arguments to propose that icosahedral arrangements of atoms or molecules would be prevalent
in supercooled liquids. Indeed, this is found to be the case for many glassformers where the in-
teractions between the constituents are approximately spherically symmetric [24]. Now, in atom-
istic glassformers (eg metallic glassformers), it is hard, though not impossible [106–108] to iden-
tify such structural motifs. Given that these geometric motifs are related to the interactions, and
in (non–spherical) molecules, clusters have rather different topologies [109], even if molecular
coordinates were to be found, the geometric motifs formed would likely have a structure distinct
to the “canonical” icosahedron. For a more extensive discussion, see [24].

4.1. Kirkwood gk in molecular liquids

In molecular liquids, owing to the experimental difficulties encountered when looking for higher-
order structural motifs (such as icosahedra or even more complex motifs), most experiments
have looked at two point correlation functions, such as the structure factor S(Q). It turns out
that S(Q) hardly evolves upon supercooling (Figure 8(a)) [103]. Some more information about
the correlations between the orientation of neighboring molecules can be gained by measur-
ing the Kirkwood factor gk which is the ratio between the measured static dielectric strength
∆χ1 = ϵ(0)−ϵ(∞) and its expected value in an ideal gas of same density. Indeed, according to the
standard interpretation gk = 1+ z〈cos(θ)〉 where the average 〈. . .〉 is taken over the z molecules
statically correlated to a given molecule, and θ the angle between the permanent dipole of
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=0.0083 s, which is fast enough that we are able to observe
ballistic motion over about one decade in time for all area
fractions. At long times, the bead motion is diffusive and
characterized by a diffusion coefficient according to
#!r2!""$=4D". Our run durations are 20 min, corresponding
to a longest delay time of "=1200 s, which are long enough
for the beads to explore the entire system several times at the
lowest area fractions. The crossover from ballistic to diffu-
sive regimes becomes progressively slower as the area frac-
tion increases. Our run durations are long enough to fully
capture the diffusive regime at all but the highest area frac-
tions. Thus our full position vs time dataset, for all beads and
area fractions, should suffice for a complete and systematic
study of changes in dynamics as jamming is approached.

The MSD has long been used to characterize complex
dynamics. In simple systems there is a single characteristic
time scale given by the crossover from ballistic to diffusive
regimes. In supercooled or glassy systems, the crossover is
much more gradual and there are two characteristic time
scales. The shortest, called the “#” relaxation time, is given
by the end of the ballistic regime. The longest, called the “$”
relaxation time, is given by the beginning of the diffusive
regime. At greater degrees of supercooling in glass-forming
liquids, and at greater packing fractions in colloidal suspen-
sions, the $ relaxation time increases and a corresponding
plateau develops in the MSD. As seen in our MSD data of
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Figure 8. Two-point measures of structure. (a) The static structure factor S(Q) mea-
sured [103] in propylene glycol (PG), where Tg = 160 K. A careful analysis of S(Q,T) for PG
reveals that, upon cooling, the first peak decreases in height and moves to higher Q, while
the second peak slightly increases in height and the structure of the third peak slightly de-
velopps. These subtle effects of cooling for PG come both from the liquid’s increase in den-
sity, and from the ordering of molecular orientations, in which both the effects of hydrogen
bonding and the constraints on molecular packing introduced by the change in density are
involved [103]. Reproduced with permission from American Institute of Physics Copyright
1996 [103]. (b) The radial distribution function g (r ) measured in a suspension of colloidal
hard spheres. Indicated is the effective volume fraction [33]. (c) The radial distribution func-
tion g (r ) measured in a fluidized monolayer of bidisperse vibrated grains. Indicated is the
effective volume fraction. The thick green curve marks the highest area fraction, 0.744 at
which the system could be equlibrated on the experimental timescale, see the discussion
in Section 2.2. Reproduced with permission from American Physical Society [100, 104].
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a central molecule and the dipole of one of its neighbors –note that the molecular dipole mo-
ment is easy to define only for molecules where it comes from a single couple of neighboring
atoms, e.g. in monoalcohols–. However, recent theoretical progress [110] have shown that the
formula gk = 1+ z〈cos(θ)〉 is a crude oversimplification, e.g. long range effects, as well as polar-
izability, are involved in gk . Experimentally, gk hardly evolves upon supercooling [111], because
the relative increase upon cooling is much smaller than that of the trivial factor 1/T (in an ideal
gas ∆χ1 ∝ 1/T ). Thus gk does probably not contain any structural information which could be
decisive for the glass transition –even though gk is of course a key quantity to get a microscopic
understanding of dielectric signals–.

4.2. Measuring higher–order structure in 3d colloidal glassfomers

The first experimental study that clearly identified a change in structure in a colloidal system
undergoing dynamical arrest in fact pertained to gelation [112]. This was followed by work on a
hard sphere like system which found a growth in both fivefold symmetric order and locally crys-
talline order. The authors found that the local crystalline order was more strongly correlated with
the slow dynamics than the fivefold symmetric order [113]. Curiously, using the very same col-
loidal particles, one of us found a growth in fivefold symmetry with little indication of crystalline
order [33]. Whether this was due to small differences in the system (for example salt concen-
tration and consequent electrostatic screening) or the different analysis methods used [74, 75]
remains unclear. Obtaining decisive conclusions obviously remains quite challenging. We remark
that in [112], the topological cluster classification [75] algorithm was found to be more effective
than bond–orientational order parameters in the case of gelation [74, 112].

The use of nano–particle resolved studies (Section 3.2.1) enabled a regime of deeper super-
cooling to be explored. In particular, Figure 9 shows a parallel growth of dynamical and icosa-
hedral order lengthscales at deep supercooling, three decades in relaxation time past compara-
ble studies. Further methods by which higher–order structure can be investigated in colloidal
systems are reciprocal space techniques using sophisticated light scattering methods [114] such
as X-ray cross–correlation [115] and microbeam X-ray scattering [116]. Both of these techniques

a b c

=0.52 =0.60

Figure 9. The change in structure in a colloidal glassformer and growth of structural and
dynamical lengthscales. Analysis of super–resolution images of small colloidal particles,
allowing deeper supercooling than otherwise possible. (a, b) Renderings of locally favoured
structures, 10–membered defective icosahedra (green) and 13–membered full icosahedra
(purple) for volume fractions of φ = 0.52 (weakly supercooled) and φ = 0.60 (deeply
supercooled) respectively. (c) Static and dynamic lengthscales ξStatic and ξSlow obtained for
defective icosahedra and slow moving particles respectively. Solid lines are fits inspired by
RFOT. Reproduced from [49].
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are highly promising, as they are not as limited in the size of the colloids that can be used, in
the manner of real space microscopy, and a systematic analysis approaching the glass transition
would likely result in considerable insight.

4.3. Hexatic order in 2d colloidal systems and vibrated granular assemblies

In 2d, the situation with local structure is profoundly changed. Unlike the case in 3d where five-
fold symmetric structures found in the supercooled liquid are incompatible with the crystalline
order, in 2d the local packing is hexagonal, as is the crystal. Most experiments on mechanically
shaken granular assemblies are conducted in 2d, so that the natural structural order parameter
describes the so-called hexatic order, which captures the orientational order of the virtual bonds
connecting the neighbouring grains or colloids. The order parameter reads:

Ψ
j
6 =

1

n j

n j∑
k=1

e i 6θ j k (20)

where n j is the number of neighbors of j , the sum is made over the n j neighbors and θ j k is the
orientation of the bond j −k. Ψ6 is a complex number, whose modulus is 1 if the neighbors are
located at the vertices of a perfect hexagon and decreases to zero as the local disorder increases.
Its phase indicates the local orientation of the hexagonal order.

The influence of this local order on the dynamics has been debated in Refs [118–121]. In
particular the presence of locally crystalline micro-domains, which may always be present in
a 2d packing of discs may contribute to joint growth of the hexatic order and the relaxation
time. The two signals are correlated by a common cause, but are not necessarily the cause of one
another. Indeed there are examples where no correlations could be found [98], as reported here,
in Figure 10 in the case of the mechanically shaken granular assemblies studied in [65]. Panels
(a) and (b) respectively display the modulus and the phase of Ψi

6, while panel (c) displays the
local relaxation Qi ,t . One hardly sees any similarities between the dynamical and the structural
patterns, as confirmed by the scatter plot of the modulus of Ψi

6 vs. Qi ,t in panel (d). The
apparent contradiction in these results with others [118] surely merits further investigation.
Another anomalous example is flexible circular confinement, where the space at the walls due
to the incommensurately between the hexagonal packing and the confinement in fact led to an
acceleration in the dynamics for cases with high hexagonal symmetry [122].

4.5. A FEW OTHER IDEAS 159

Figure 4.26: Comparison between the bond-orientational parameter and the
relaxation in the cyclic shear experiment. Top left Modulus 〈ψ̄6〉 averaged
over τ∗. Top right Local orientation of the hexagonal order, 〈φ6〉, averaged
over τ∗. Colors represent the angle with the horizontal line oriented to the
right. Bottom left Local relaxation qt

i(τ
∗) induced by the displacements

between t and t+τ∗. Bottom right 〈ψ̄6〉 (vertical axis) vs qt
i(τ

∗) (horizontal
axis).

Clearly, this statement cannot stand for the large decorrelation patterns
of the dynamical heterogeneities, formed of vortices and large currents, but
could well describe the “cracks” one can see on short time scales, and that
we call the clusters of cage jumps. Rephrasing this idea, one can ask the
following question: do the cage jumps have a preferential direction, and is
this direction pointing to a neighboring particle?

To check this, we have computed the angular Pdf of the angle between
the displacement during a jump and the direction of the neighbors (in the
sense of Voronöı) just before the jump. The result is presented in fig. 4.27-
left:

This Pdf does not exhibit any special behavior around 0, correspond-
ing to the direction of the displacement, and is identical to the randomly
distributed angles case within the experimental accuracy. So in the cyclic

4.5. A FEW OTHER IDEAS 159

Figure 4.26: Comparison between the bond-orientational parameter and the
relaxation in the cyclic shear experiment. Top left Modulus 〈ψ̄6〉 averaged
over τ∗. Top right Local orientation of the hexagonal order, 〈φ6〉, averaged
over τ∗. Colors represent the angle with the horizontal line oriented to the
right. Bottom left Local relaxation qt

i(τ
∗) induced by the displacements

between t and t+τ∗. Bottom right 〈ψ̄6〉 (vertical axis) vs qt
i(τ

∗) (horizontal
axis).

Clearly, this statement cannot stand for the large decorrelation patterns
of the dynamical heterogeneities, formed of vortices and large currents, but
could well describe the “cracks” one can see on short time scales, and that
we call the clusters of cage jumps. Rephrasing this idea, one can ask the
following question: do the cage jumps have a preferential direction, and is
this direction pointing to a neighboring particle?

To check this, we have computed the angular Pdf of the angle between
the displacement during a jump and the direction of the neighbors (in the
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Figure 10. Comparison between maps of the bond-orientational parameter and the re-
laxation dynamics in a mechanically shaken granular assembly. Adapted from Ref [117]:
(a) Modulus of ψ6 averaged over τα. (b) Local orientation of the hexagonal order, phase of
ψ6, averaged over τα, color coded by the angle with the horizontal axis. (c) Local relaxation
Qi ,t (τα) induced by the displacements between t and t +τα. (d) Scatter plot of the of

∣∣ψ6
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i

averaged over τα vs. Qi (τα); each point corresponds to one particle.



18 Olivier Dauchot, François Ladieu and C. Patrick Royall

4.4. The riddle of the different structural and dynamic lengthscales in molecules and
colloids and grains

Over the years, a considerable effort has been devoted to understanding structural and dy-
namical lengthscales in glassforming systems [23, 24, 123]. One observation that has emerged is
exemplified here: molecular systems appear to have much smaller numbers of units (i.e. molecules)
involved, despite the fact that they are much more deeply supercooled than colloids or grains (or
indeed dynamical data in computer simulation). Consider Ncorr in Figure 7 in which the molec-
ular data reaches perhaps 10 at Tg and only 2 at supercooling comparable to the colloidal data
in Figure 9(c). The latter, however, has a lengthscale of 2 or 3 diameters, so in a 3d system this
corresponds to 10-30 units, not the 2 in the molecular case. While these numbers are far from
large (like all accessible lengths and volumes in equilibrated glassformers), they do not appear
to be consistent. And the literature is filled with many more examples: colloids and grains (and
computer simulation) typically seem to have many more units involved in relaxation than is the
case for molecules [24, 64, 65, 123].

We propose that the solution of the riddle lies in how we interpret the “units”. For colloids
(and grains) this is obvious – a unit is a colloid or grain, as they are rigid bodies. For molecules the
situation is more subtle: they are typically not rigid bodies and then one may consider the number
of effectively rigid “beads” that are connected together in each molecule. This point is further
discussed in ref. [124] where RFOT predictions about thermodynamic-kinetic correlations were
compared with available experimental data for molecular supercooled liquids. In short it turns
out that typical molecules the number of beads per molecule is typically in the 3−7 range [124],
(e.g. one obtains a value of 4.5 for glycerol). Scaling the above numbers by 5 largely alleviates the
discrepancy between the molecules and the colloids (and by inference, the simulations).

5. Features which might be different between molecular, colloidal and granular
glasses

In this section, we briefly review some scientific questions where the universal picture illustrated
in Section 3.3 is far from being achieved, and perhaps might not be there at all.

5.1. Experimental evidence in support of the dynamical facilitation approach in colloids

In addition to the relaxation noted above in Eq. (3), and tested in Figure 3(b, c), dynami-
cal facilitation theory (DF) predicts a dynamical phase transition. This dynamical phase tran-
sition was first identified in kinetically constrained models, which explicitly have no inter-
esting thermodynamic properties in the sense that they are ideal gases. They nevertheless
exhibit dynamical behaviour consistent with the systems we consider here, such as a mas-
sive increase in relaxation time and dynamic heterogeneity i.e. they are glassformers [4].
In addition to KCMs, atomistic models exhibit essentially the same behaviour [126, 127].The dy-
namical phase transition of DF occurs in trajectory space, in the form of two populations of trajec-
tories, characterized by their activity (akin to two populations in density in, e.g. a liquid-gas phase
transition). Two such populations of trajectories, where trajectories are then small (sub)-systems
of order 100 particles considered over a timescale comparable to or somewhat larger than the
relaxation time τα, have been identified in colloidal systems. Here the activity is equated with
the mean squared displacement of the particles in a trajectory [73, 128] with two populations
of active (normal liquid) and inactive (glassy) trajectories upon biasing the trajectory popula-
tion by suitable post-processing. Another way to identify the dynamic phase transition is through
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Figure 11. Testing the dynamic facilitation theory: dynamical phase transition and exci-
tations in colloidal experiments. (a) The dynamical phase transition occurs in the space
of trajectories. Trajectories here are comprised of 100 particles closest to a central parti-
cle. Particles rendered in purple are in defective icosahedra, the locally favoured structure
for this system. (b) Evidence for the dynamical phase transition is shown in the form of
the probability distributions of populations of defective icosahedra for several biases µ at
volume fractions φ = 0.58. The biasing field µ is analogous to chemical potential in con-
ventional phase coexistence and here biasses the system towards a state with a high time-
averaged population of defective icosahedra. Data modified from [73]. (c) Identifying exci-
tations which are the elementary units of relaxation in DF. Distribution of excitation times
in a 2d colloidal system. P (∆t ) for φ= 0.73 (open red circles),φ= 0.74 (filled blue triangles),
φ= 0.75 (filled black inverted triangles), φ= 0.77 (open brown squares) and φ= 0.79 (open
green diamonds), showing that excitations are localized in time and do not change their
character upon supercooling. (Inset) Representative trajectory of a particle in a excitation
of duration indicated in red. The excitation time duration ∆t and the commitment time ta

are marked by dotted lines. Data reproduced from [125].

the population of locally favoured structures in trajectories, as indicated in [Figure 11(a, b)]. Here
the active and inactive phases have small and large time-averaged populations of LFS [47, 73].

Further studies of the dynamic facilitation theory include identifying the basic mechanism
of relaxation, through excitations, pockets of mobility where particles commit to a new position
on a short timescale, as shown in Figure 11(c) inset 2. As predicted by the theory, the nature of
excitations remains essentially unchanged upon supercooling [Figure 11(c)] [125].

5.2. Towards Configurational Entropy in colloids and granular glasses

The (configurational) entropy Sc(T ) was originally determined in molecular systems, lead-
ing to a plot like that shown schematically in Figure 2(a), from where [129] the number
z(T ) = Sc (∞)/Sc (T ) of molecules in a CRR is extracted, which yields z(Tg ) ≃ 4−6, i.e. quite mod-
est values. Note that here, z(T ) is regarded as a thermodyanmics, static quantity, distinct (though,
depending on the theoretical standpoint, perhaps equal to) the number of units/beads making
correlated motion Ncorr discussed in Sections 3.3 and 4.4.

In colloidal systems, configurational entropy can be inferred via pinning a subset of parti-
cles [130] and was found to decrease upon approach to the glass transition. In unpinned systems
insight can be gained from particle–based methods. In Figure 12, we show the overlap of spheri-
cal regions of 64 particles in various locations in the system via a singular value decomposition.

2Within certain models, the population of excitations may be conserved. However, in the particulate models of
interest here, it is rather that on average, the population is fixed, but a specific excitation tends to last for a short time.
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Figure 12. Evidence for a change in configurational entropy: Static overlap fluctuations in
a colloidal glassformer. (a): Schematic representation of the overlap calculation: Isolated
clusters of No particles are subsampled from a large configuration; for every pair of clusters,
an optimal singular value decomposition (SVD) is found by determining the rotation matrix
R(α,γ,β) and the translation vector u⃗ that maximise the overlap. For ease of representation,
here No=10 and Q=0.7. (b): Probability distribution of overlap fluctuations for volume
fractions 0.523, 0.562, 0.583 and 0.598. (c, d): Overlap fluctuations for all test spheres, and
for the most LFS-poor (white) and rich (blue) 25% test spheres, at volume fractions 0.523
(c, green) and 0.598 (d, purple). Shown in figures c and d are samples of LFS-poor (left)
and rich (right) test spheres, where green particles are in defective icosahedra LFS and grey
particles are not. Reproduced from [49].

This yields a distribution of overlap [Figure 12(b)], in which we see the emergence of a tail of high
overlap at deep supercooling. We associate this tail of high overlap with a reduction in configu-
ration entropy [49]. Other methods to explore a reduction in configurational entropy in colloidal
systems include pinning, which may be induced by optical tweezers [46, 125, 131] or adhesion of
the colloids to a substrate [130].

Work to explore other predictions of the thermodynamic approach includes a measurement
of the fractal dimension of so–called cooperatively rearranging regions (CRRs). This was found
in colloidal systems to increase, consistent with more compact CRRs at deep supercooling [132,
133]. However equilibrating conventional colloidal systems past the mode–coupling crossover,
where such compaction is expected [23], is hard. This can be addressed using small colloids,
where indeed compaction of CRRs is found [134]. The interface of CRRs is also predicted to have
certain scaling properties [135] and this too has been measured with colloidal systems in real
space, where agreement was found with the predictions [136].



Olivier Dauchot, François Ladieu and C. Patrick Royall 21

5.3. Deeper in the glass

Until now, we have focused on equilibrated supercooled liquids approaching the glass transi-
tion. Here instead we turn our attention to the Gardner transition, which occurs in the (non–
equilibrium) glass. When the cooling or compression rate is not slow enough, the system falls out
of equilibrium, leaves the supercooled liquid branch (see coloured lines in Figure 2 and Figure 13)
and becomes a glass. Upon further compression, the hard sphere glass in infinite dimension un-
dergoes a Gardner transition [137–139]: glass states, envisioned as meta-basins in configuration
space, break up in a hierarchy of marginally stable sub-basins at low enough temperature or high
enough pressure.

Eventually the hard sphere glass jams at infinite pressure. The jamming transition is a geomet-
rical transition taking place at zero temperature or infinite pressure, which controls the mechan-
ical stability of athermal packings [140–143]. It occurs when particles, with well defined sizes and
being compressed following a given protocol, cannot accommodate the imposed packing frac-
tion without overlapping. It was shown that the exponents characterizing the criticality of the
transition could be computed, following the compression of a given glass state to infinite pres-
sure, provided that the presence of the Gardner phase is taken into account. Conversely, there is
experimental evidence in colloidal [144] and granular [145, 146] systems that the diverging and
vanishing length scales, which characterize the approach to the transition, survive in a finite, al-
though modest, range of temperature for systems of soft spheres. The same holds true for the
vibrational properties of the system [147–150], although extracting the latter from experimental
data was shown to be a very delicate task [151]. In all cases, confirming the presence of a Gardner
phase in deeply compressed glasses is a matter of great importance. [30].

The existence of a Gardner transition in finite dimension is now well established for hard
sphere potentials, even if it is likely to be replaced by a crossover[152]. The same physics holds
in a finite temperature range for softer potentials with a finite range [153]. In the case of the soft
Lennard Jones potential pertinent to molecules, there is not yet direct evidence of the Gardner
marginality, but the stability of the glass and finite size effects may also hinder it.

5.3.1. Experimental evidence for a Gardner crossover in granular glassformers

Mechanically shaken granular assemblies are particularly well–suited suited to identify an
experimental signature of the Gardner transition. The grains interact via a very hard potential and
the system is known to exhibit a jamming transition, where the mechanical pressure diverges,
when the grains come into contact. Practically, their sizes allow for a direct visualisation not
only of their positions, but also of their contacts. Crucially, the coordinates of the grains may
be determined with much higher accuracy than for most colloidal systems, enabling very small
changes in displacement to be measured reliably.

Figure 13 illustrates the real space realization of the full replica symmetry breaking taking
place in a mechanically shaken granular assemblies. Once a highly compressed, jammed glass
is obtained, the system is gently decompressed while ensuring that it remains in the same
glass and compressed again. This cycle is repeated many times for different target pressure. For
sufficient compression, the final state differs from one compression to another: in the glass phase
(φg < φ < φG ) the particle (in blue) is caged by its neighbors; those of which establish contact
at jamming (φJ ) are not selected yet. In the Gardner phase (φ > φG ), each of the sub-basin
eventually corresponds to a unique contact network (red neighbors). Below jamming, repeating
compressions starting from the same glass state, where particles vibrate in a large (grey) cage,
leads to a different caging location in a smaller cage (blue-red-yellow). The effect is quantified
by comparing the average cage size within one state, ∆, and the average distance separating the
cages of the same particles across successive compression cycles, ∆AB . While for φ < φG , ∆AB
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Figure 13. Evidence for a Gardner crossover in a mechanically shaken granular assembly
adapted from [154]. (a) The inverse pressure 1/p is shown as a function of the volume
fraction φ, with the pink line corresponding to the equilibrium equation of state. At low
volume fraction, the system is a fluid. For φ > φg the system supports many meta-stable
states with a range of pressures, which may be either stable glasses (dark shaded region)
or marginal glasses (pale, yellow, shaded region) (based on [29]). (b) Upon crossing the
Gardner transition, the energy landscape breaks into a fine structure showing “energy
minimina within minima within minima”. Also shown is an experimental realization in a
bi-disperse system of discs for two independent compression up to jamming within the
same glass state. (c) The cage size ∆(φ) and the typical distance between the cages,∆AB ,
obtained for different compression.

decreases as ∆, it plateaus to a constant value equal to ∆(φG ), when φ>φG , signing the entrance
in the Gardner phase.

The transition to the Gardner phase should also be marked by large scale correlations in space
and time. Quite remarkably those were reported experimentally [64, 155] before the theoretical
prediction of a Gardner phase was made. To do so the dynamics was probed at the scale of the
contact, selecting a probe length a smaller than a hundredth of the particle size, large dynamical
heterogeneities were observed and a critical scaling was established for the four-point correlator
G4, Eq. (8).

5.3.2. Experimental evidence for Gardner dynamics in a sedimenting Brownian system

The direct observation reported in the previous section cannot be easily adapted to col-
loids due to the challenge of tracking the particles with sufficient accuracy [14]. An original
method was elaborated in [156] in a system using particles 50µm in diameter immersed in a
solvent whose density is just below that of the particles. These particles undergo some Brown-
ian motion, though the Brownian time to diffuse a diameter is of the order of a week! Never-
theless, they exhibit sufficient Brownian motion for the purpose intended and are large enough
that their coordinates can be tracked accurately. As a result, starting from an initial disordered
state, the particles slowly sediment, i.e. the number density of the system ρ(t ) continuously in-
creases with the time t elapsed since the initial state. The system thus slowly tracks across the
phase diagram. The key idea is to use the short time dependence of the Mean Square Displace-
ment (MSD) of particles to probe the state that the system is experiencing. It turns out that,
for 330min ≤ t ≤ 410min, one observes MSD(τ) ∝ ln(τ/τ⋆) where τ is the lag time over which
the MSD is observed, and τ⋆ ≃ 0.1ms is the minimal lag time above which MSD can be mea-
sured. This logarithmic dependence, observed for 3 decades in τ, is interpreted [156] as a signa-
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ture of the Gardner state that the systems experiences in the interval 330min ≤ t ≤ 410min, before
moving to another glass state at t > 410min.

5.3.3. A debated question in molecular liquids

In molecular liquids, the first experiments looking for the Gardner transition were carried out
in Ref. [157] by measuring the linear dielectric susceptibilityχ1 from Tg to the lowest temperature
(5K) in two liquids (namely sorbitol and xylitol) exhibiting a well-pronounced Johari–Goldstein
β relaxation. The excess of the measured χ1, with respect to what is expected in the β relaxation
regime, was related to a possible Gardner transition in these two liquids. Later, the third-order
susceptibility χ3 was measured [158] in glycerol below Tg ≃ 188K, down to 10K. The motivation
was that, in mean field (d =∞), χ3 must diverge if a Gardner transition happens. As no sign of
a divergence was detected for χ3, this was interpreted in Ref. [158] as revealing the absence of a
Gardner transition in glycerol, at least for T ≥ 10K. Because the liquids studied in Ref. [157] and
in Ref. [158] are different (even though they are all poly-ols), and because in d = 3 (as opposed to
d =∞), some Gardner-like physics might take place without implying a signature on χ3, we may
regard the question of Gardner physics in molecular glasses as being still open.

6. Summary and outlook

In this last section, we first recap what we have learnt from the work we have reviewed and
then discuss what could be done to complement the present picture that we have for the glass
transition. As is the case throughout this article, we focus on the complimentary work of the
authors and co–workers.

6.1. What have we learnt ?

Despite the wild differences of their length– and time– scales, molecular, colloidal and granular
glassforming systems appear to exhibit a universal slowing down at the macroscopic scale. If we
are to assume that the same physics is responsible for this phenomenon, then we need to account
for these differences in time– and length–scales when considering these classes of glassformers
and comparing between them. It therefore seems unlikely that a vibrated granular system can be
equilibrated near φg , by analogy to the relaxation time τα(Tg ) = 100s of molecular systems, due
to the truly astronomical timescales involved (see Figure 1). In the case of colloids, however, there
is a range of lengthscales and corresponding timescales. Some systems of clay particles (whose
size can be ∼10nm so that τB ∼ µs) have been equilibrated for years [159]. Reference to Figure 1
suggests that under these conditions equilibrating a colloidal system at φg ie τα(φg )/τ0 = 1014

might be realised.
Since this slowing down can be accounted for by theoretical approaches based on different

principles, a tremendous effort has been carried out to refine our understanding of this slowing
down, in particular to characterize the dynamics locally in space and in time. This led to the
discovery of so-called dynamical heterogeneities, which are now well characterized in these three
kinds of glassformers and have common universal features. However, this “universality” of the
glass transition is, at present, far from being as strong as that of standard critical phenomena:
firstly because the underlying cause of the dynamical arrest remains unresolved and secondly
because demonstrating universal behaviour has some way to go. For example, the equivalent
of locally favoured structures have yet to be identified in molecular systems, and the 2d vs 3d
differences between vibrated granular systems and colloids/molecules suggests some differences
in behaviour. Examples of these include the nature of the local structure (see Section 4) or even
the nature of the glass transition itself [160].
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6.2. How could the "universal" picture be developed ?

We have made the case for a universal picture of vitrification in the system classes that we have
considered. We now consider how this might be developed. In this spirit, we discuss below a
subjectively chosen short list of questions, distinguishing between those pertaining mainly to
dynamics and those related to structure.

• What are the absolute values for Ncorr at the glass transition (Tg ,φg )? The measurement
of lengthscales as we discuss above (Section 4.4) seems to suggest that there is some evi-
dence for a roughly fixed value for lengthscale of order 3–5 (beads) diameters at the glass
transition Tg . We emphasize that, contrary to colloids and grains where real space imag-
ing has been achieved, the absolute value of Ncorr(Tg ) is not precisely known in molecular
glassformers (see Section 3.3). This precludes a stringent test of existing theories, e.g. the
RFOT prediction [2] stating that Ncorr(Tg ) ≃ 195 beads for most liquids. Should Ncorr(Tg )
be much smaller than expected, this could even lead to a situation where some theories
are not really distinguishable. We further emphasise that this considers the lengthscale
associated with theα relaxation time. In fact, recent computer simulation work [134,161]
suggests that the lengthscale may depend on the timescale probed, with excitations of
dynamic facilitation found at microscopic times and larger CRR–like entities at longer
times. These observations are corroborated by experiments with colloids [125, 134]. Ob-
taining a time–dependent lengthscale to investigate further these findings thus emerges
as a major challenge in experiments with molecular glassforming systems.

• Beyond the mere existence of Dynamical Heterogeneities, can we say more about the na-
ture of the dynamical excitations, e.g. do they take the form of avalanches? In the case of
mechanically shaken grain assemblies, it was shown without ambiguity that dynamical
heterogeneities result from a two time scale process [98]. On short time scales, clustered
cage jumps concentrate most of the relaxation processes. On larger time scales but still
rather shorter than that corresponding to the mode–coupling crossover φmct, such clus-
ters, akin to the cooperatively rearranging regions, aggregate both temporally and spa-
tially in avalanches and ultimately build up the large scales dynamical heterogeneities.
This was later confirmed for super-cooled liquids, performing molecular dynamics sim-
ulations on a two-dimensional model of glass-forming liquid and applying the same clus-
ter analysis [162]. This picture clearly suggests the presence of facilitation, although not
necessarily conserved. However further examining experimental data from [100], it was
shown that increasing the packing fraction of the granular assembly the number of CRR
decreases, while their typical size increases and they appear more and more indepen-
dently from each other : the form of facilitation responsible for the avalanche of CRR
plays a less important role [101].

Conversely, recent computer simulations at deep supercooling have found that the
elementary units of facilitation, so-called excitations, can become “drowned out” in the
rapid relaxation in the mode-coupling regime [134]. This is likely related to the dynam-
ical spinodal nature of the mode-coupling crossover [163] and the change in the na-
ture of relaxation mechanism past the MC crossover (T < Tmct,φ > φmct). At deep su-
percooling, simulations have also found multiple time relaxation processes [134, 161],
with the emergence of compact clusters on short time scales. It also shares the same
observation of an increasing size and a decreasing number of the initially relaxed clus-
ters. The picture of avalanches obtained from the granular data at weaker supercooling
(φ < φmct) is now replaced by that of a slow coarsening of the CRR regions [161]. In
this context facilitation is seen as playing a more important role at lower tempera-
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ture [134, 161]. Finding experimental verification of this multiple timescale–multiple
lengthscale relaxation thus emerges as a key challenge.

• Can we access higher order structural measures in molecular systems and 3d granular ex-
periments and indeed metallic glassformers [106–108], similar to what has been achieved
in recent years in colloids? For molecular systems, we are not aware of decisive feature ev-
idenced by macroscopic diffraction experiments. However one possible route forward is
Reverse Monte Carlo, where two–point structure is matched to computer simulation and
the resulting higher–order simulated structure analysed [164], which is used to consider-
able effect in some other classes of glassforming system [20]. As for local investigations
(at the nano–scale), it seems hard to avoid that any probe which is molecular in size will
change the interactions felt by the glass forming molecules probed by the experiment:
this is already known from the changes in Tg observed in polymers near free surfaces,
or by the extremely involved variations measured when inserting glass forming liquids
in nano-porous media. For 3d granular systems, the situation seems less challenging but
a dedicated setup remains to be conceived. One possibility is to make use of hydrogel
spheres in index matched scanning experiments as initiated in [165].

• Can an equivalent of Sconf be measured in granular systems? This would allow one to test
more deeply to which extent one can rely on an effective thermodynamics for granular
systems. A starting point could be to try to adapt the method recently conceived for
colloids (see Section 5.2).

• Can we develop further measurements of the Point to Set length Lpts length? The Lpts

length-scale is a central concept for thermodynamic theories [2, 6] of the glass transi-
tion since it gauges the influence that (amorphous) boundary conditions have on local
thermodynamics. Establishing that Lpts exists and grows upon cooling would be a deci-
sive argument in the controversy between the thermodynamic and the dynamic scenario
for the glass transition. In the first numerical study [166] Lpts was studied by using a well
equilibrated configuration that is suddenly frozen outside a cavity of size L. It was shown
later [167] that this is a particular case of the more general “random pinning” idea where,
by freezing a fraction c ∝ 1/L3

pts of the particles randomly chosen in the system, one in-
duces, for c ≥ ccritical(T ) a phase transition towards an ideal glass state, predicted by RFOT.
To address this question experimentally, it seems extremely challenging to perform in a
molecular glass an experiment similar to that achieved in colloids [46, 130, 168]: we are
aware of two preprints [169,170] where a concentration c of large molecules, dispersed in
short molecules, is considered as a pinning field, and where the changes in the dynamics
is interpreted as revealing the pinning effect associated with Lpts (see however an alter-
native interpretation proposed in [170] where the small molecules are seen as plasticizers
of the large ones). As any experiment in molecular glassformers will probably turn out to
be a very non ideal realization of pinning, we foresee that several kinds of experimental
techniques will be needed to obtain a consensus on the existence of Lpts, just as what
happened two decades ago, when several experimental tour de force were needed to con-
clude about the existence of dynamical heterogeneities in supercooled molecular liquids
(see Ref. [83] for a review). This will, surely, demand a real theoretical effort to adapt the
pinning idea to the realm of these future experimental breakthroughs.

• Is it possible to obtain experimental evidence for a dynamical phase transition between
active and inactive trajectories in grains and molecules, as has been demonstrated in the
case of colloids (Section 3.3)? In the case of vibrated grains, one imagines that an approach
similar to that employed for the colloids might be appropriate. For molecules, less direct
methods may need to be employed, we note for example the intriguing recent results of
Jin et al. [171].
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• Another theory of the glass transition is Geometric Frustration, which posits an avoided
transition in a curved space [6]. While a 3d curved space is virtually impossible in
experiment, elegant work with a 2d hyperbolic curved space has been carried out in
computer simulation [119]. Experiments with colloidal systems have been carried out
which exhibit such hyperbolic curved space [172] and thus have the potential for realising
the intriguing results of the simulations.
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