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Dynamics and interactions of Quincke roller clusters:
From orbits and flips to excited states
Abraham Mauleon-Amieva1,2,3,4, Michael P. Allen1,5, Tanniemola B. Liverpool6,
C. Patrick Royall1,2,3,7*

Active matter systems may be characterized by the conversion of energy into active motion, e.g., the self-pro-
pulsion of microorganisms. Artificial active colloids form models that exhibit essential properties of more
complex biological systems but are amenable to laboratory experiments. While most experimental models
consist of spheres, active particles of different shapes are less understood. Furthermore, interactions
between these anisotropic active colloids are even less explored. Here, we investigate the motion of active col-
loidal clusters and the interactions between them. We focus on self-assembled dumbbells and trimers powered
by an external dc electric field. For dumbbells, we observe an activity-dependent behavior of spinning, circular,
and orbital motions. Moreover, collisions between dumbbells lead to the hierarchical self-assembly of tetramers
and hexamers, both of which form rotational excited states. On the other hand, trimers exhibit flipping motion
that leads to trajectories reminiscent of a honeycomb lattice.
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INTRODUCTION
In recent years, much effort has been devoted to investigating the
motility of microorganisms, driven, e.g., by flagellae and to the re-
alization of synthetic active matter by means of diffusophoretic (1),
thermophoretic (2), and field-driven (3) active particles. These
active particles exhibit fascinating collective phenomena not
found in passive systems, such as flock formation (3), dynamical
clustering and phase separation (4–6), and anomalous density fluc-
tuations (7). While many experiments have focused on self-pro-
pelled spherical colloids, e.g., Janus particles, biological
microswimmers are often anisotropic (6).

Many artificial swimmers display a persistent random walk
dominated by ballistic runs and rotational diffusion, whereas the lo-
comotion of microorganisms allows adjustments in their trajecto-
ries (8). Some synthetic particles with motility akin to that of
certain biological agents have been produced, such as an artificial
flagellum (9); rod-shaped (10), ellipsoidal (11) and chiral particles
(12) that exhibit flocking (13); asymmetric particles (14) that feature
gravitaxis (15), along with in situ feedback of model vision cones
(16), i.e., active control (17). Another form of active particles that
break symmetry through their motility are spinners (18), which
exhibit rotating crystals (19), turbulence (20), and exotic phenom-
ena such as odd viscosity (21).

In active colloidal systems, attention has often focused on assem-
bly of large numbers of particles, i.e., the emergence of macroscopic
states or active “phase behavior” (3). By contrast, assembly of fixed
numbers of passive colloids, often through careful control of inter-
actions (22), has led to supracolloidal chemistry with reaction path-
ways at the colloidal rather than molecular level (23–27), which

exhibit some aspects of molecular interactions (28). However,
passive colloids exhibit overdamped dynamics, so collisions as
such are very different to those that would occur in atomic and mo-
lecular systems (29). While many active colloidal systems are diffu-
sive at long times, the persistence length of their motion can be
many particle diameters, and, thus, one may inquire as to collisions
between active colloids. Collisions between active colloids may thus
present some similarity to collisions between atoms and molecules.
In the case of “wet” active matter, when active particles come close
together, hydrodynamic coupling can lead to the formation of
bound states (30, 31) as observed in the volvox algae (32), which
may be analogous to electronically coupled excited bound states
in spectroscopy (29).

In experiments, assembly of active clusters has been investigated
(33, 34), along with self–assembled spinners (20). In simulation,
predictions have been made for assembly (35) and demixing (35,
36) of small clusters of active colloids (36). Cluster assembly of
active dipolar particles has been shown to exhibit an unusual
fission phenomenon (37). Mixtures of anisotropic active particles
exhibit even more complex behavior including microphase separa-
tion [which can also be seen in some experiments with active mono-
mers (38)], fluidization, and three-phase coexistence (39). Recently,
experiments have been conducted, which explore the interactions
between anisotropic active colloids such as spinning microtori
(40) and chiral clusters (41), along with rotational states formed
via collisions of upright active disks (42). Collective behavior of
pear-shaped particles has been investigated (43), driven via the
Quincke electrorotation of particles (3). Interactions have even
been manipulated in systems of dumbbells (44) and anisotropic
“patchy” active colloids (34, 45).

Here, we present an experimental study on the motion of active
colloidal dimers and trimers formed from Quincke rollers. These
display a characteristic behavior distinct from the dynamics of
spherical active particles, particularly circular and jumping
motions. The dimers share some characteristics with the pear-
shaped Quincke rollers investigated previously (43). However, just
as in passive matter, the behavior of anisotropic particles is
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profoundly influenced by aspect ratio [for example the formation of
liquid crystalline phases (46)], our dumbbells have an aspect ratio
close to unity, where dimer crystals form in the case of passive
systems (47), unlike the finite micellar-like structures formed by
pear-shaped particles (48).

RESULTS
Our active colloidal clusters are prepared by taking advantage of at-
tractive interactions between the constituent spheres leading to ir-
reversible binding. Briefly, we use polystyrene beads of diameter σ =
3.1 μm with a polydispersity of 5%. The initial suspension is
aqueous, and the colloids are electrostatically stabilized. To
remove ionic stabilizing layers, the particles are washed and trans-
ferred to a liquid of low conductivity. This leads to the formation of
clusters of different sizes. Smaller particles are separated from the
bigger ones using centrifugation, and the final suspension is a
mixture of single spheres, dumbbells, and trimers (see Materials
and Methods).

To investigate the active colloidal clusters, we exploit the
Quincke roller mechanism. Particles are confined between two con-
ductive glass slides 30 μm apart. A dc electric field E is applied per-
pendicular to the substrate, leading to the spontaneous symmetry
breaking of the charge distribution at the particle-liquid interface.
As a result, rotation at a constant rate emerges from an imposed

electric torque acting on the particle. For a rigid sphere near to a
substrate, the rotation of the particles is coupled with the transla-
tion, giving rise to self-propelled rollers, where the speed v is con-
trolled by the electric field E (3). Quincke rotation occurs above a
certain threshold field strength EQ, and this is the regime in which
we operate.

We focus on active colloidal dumbbells and trimers. A sequence
of dynamic transitions is observed for dumbbells from local spin-
ning to disordered orbital (DO) and then ordered orbital (OO)
motions as the activity increases. As a result, dumbbells exhibit an
increased trajectory radius and a change of their effective translation
and rotational motion. In agreement with the description of a
Brownian circle swimmer (49), the self-propulsion direction does
not strictly coincide with the dumbbell orientation, resulting in cir-
cular trajectories. Rather than the collective behavior of a large (un-
specified) number of particles, here, we focus on single particles and
interactions between two and three particles. When two dumbbells
collide, we sometimes observe the formation of an excited state of
tetramers that spin quickly. A more complex formation of hexamers
formed from a dumbbell colliding with a tetramer is also observed.
This excited state turns out to be unstable. We find that the spinning
motion of tetramers and hexamers is activity dependent with a cou-
pling between self-propulsion and arrested motion due to steric
frustration. We rationalize our observation of the motion and cou-
pling of dumbbells by considering hydrodynamic interactions. Fur-
thermore, while dumbbells and the excited states that result from
their collisions roll along the substrate, trimers cannot do so,
because of their triangular shape. In this case, we observe an inter-
esting combination of in-plane diffusion and out-of-plane “flip-
ping” motion. This corresponds to a jump-diffusion process that
evolves the position and orientation of the trimer discontinuously.

Dumbbells: Spinning, disordered, and ordered orbiting
We start by describing the active motion of Quincke dumbbells.
These are elongated rigid particles with a transverse (⊥) and a lon-
gitudinal (∥) orientation n̂ ¼ ðcosθn̂; sinθn̂Þ, where θ is the angle
formed with respect to a reference axis. Figure 1B depicts n̂? and
n̂k with respect to the bond connecting the two spheres. In addition,
an angle θv is given for the displacement. For the motion, we apply a
range of field strengths E ∈ {2,4} V μm−1. For low values of E, i.e., E
< EQ with EQ ≈ 2 V μm−1, we obtain passive dumbbells. Above EQ, a
spinning behavior (S) is observed with a constant rate and without a
notable displacement of the center of mass r, as shown in Fig. 1F.
This is distinct from the spinning behavior of pear-shaped rollers
found at higher field strengths (43, 50). Here, the onset of the DO
motion occurs at higher values of the applied field than that at
which the spinning occurs, i.e., Edis ≈ 2.5 V μm−1. Last, at still
higher field strengths, the circular motion becomes localized
around a central point, giving rise to OO motion (see Fig. 1F and
movie S1). Upon decreasing the field strength, we find that the
dumbbells exhibit the same dynamic behavior, that is to say that
the sequence S, DO, and OO is reversible.

We rationalize the dynamical behavior of Quincke dumbbells as
follows. We start by considering the low–field strength, spinning be-
havior, before developing an analysis of the orbital motion. In a
system of Quincke monomers, at relatively weak field strengths
around the critical field strength EQ where we find the spinning,
there is an electrohydrodynamic flow (38, 51, 52). This flow (in

Fig. 1. Spinning, DO, and OO motions of dumbbells. (A) Scanning electron mi-
croscopy (SEM) micrograph of a Quincke dumbbell. Scale bar, 5 μm. (B) Represen-
tation of a dumbbell body frame. Perpendicular ⊥ and longitudinal ∥ orientations
n̂ with respect to the bond between the two spheres are shown. In addition, the
velocity v is given by the displacement of the center of mass r. The angles θi, cor-
responding either to the velocity or to the orientation, are defined with respect to
the reference axis. (C) Field-dependent behavior of dumbbells. Passive dumbbells
become active spinners above EQ and then circular rollers above Edis. (D and E)
Schematics of incoming electrohydrodynamic flow field as a result of the field ap-
plication, whose angular velocity leads to rotation in the horizontal plane (D) and
elevated side view (E). Flow fields are obtained with eq. S2. (F to H) Representative
trajectories of the three states. (F) A spinning dumbbell at low E. Solid blue line
represents the displacement of the center of mass r, and the dashed line is from
the motion of one of the sites as the dumbbell spins. (G) DO motion and (H) OO
motion. Solid lines indicate the displacement of the center of mass, and arrows
correspond to the orientation n̂? . Insets in (F) to (H) show the time evolution of
the angles θv (dashed lines) and θn̂ (solid lines).
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plane) is toward the dumbbell, with the solvent escaping out of
plane as illustrated schematically in Fig. 1 (D and E). In the case
of a single dumbbell, angular momentum of the incoming flow
then generates a torque, leading to spinning (see the analysis in
the Supplementary Materials).

At higher field strengths, the friction due to coupling between
the dumbbell and the substrate leads to rolling and a large change
in the dynamics. The spinning at low field strengths gives way to an
orbital motion when combined with the rolling (Fig. 1, G and H). In
our system, there is, furthermore, Brownian translational and rota-
tional diffusion, which may cause some fluctuation in the successive
orbits. At relatively low field strengths, this leads to a DO state
(Fig. 1G), but it appears to be insignificant at higher field strengths
where we find an OO state (Fig. 1H).

We now analyze the DO and OO motions. The dynamics are
governed by the self-propulsion velocity v and self-spinning
angular velocity ω that are taken to be independent

_r ¼ vn̂þ ξ;
θ̇ ¼ ωþ η ð1Þ

where n̂ ¼ ðcosθ; sinθÞ and 〈ξi(t)ξj(t′)〉 = 2Dtδijδ(t − t′) and
〈η(t)η(t′)〉 = 2Drδ(t − t′) are variances for the ξ and η noise terms.

For the DO and OO trajectories, we find that the dumbbell dis-
placement occurs with a direction θv close to the transverse orien-
tation n̂?, However, these trajectories are a result of the decoupling
between the self-propulsion v and the dumbbell orientation n̂?, as
indicated by the arrows and insets in Fig. 1 (F to H). Here, the di-
rection of motion, i.e., clockwise (+) or anticlockwise (−), is not pre-
defined as in chiral particles (14), and, thus, the circular motion is
presumably due to torque that arises from the spinning mechanism
illustrated in Fig. 1 (D and E).

Following (49), the dynamics of noninteracting circle swimmers
in two dimensions are given by the overdamped Langevin equations

_r ¼ βD� ½Fn̂þ ζ�;
_θ ¼ βDr½Tþ ζθ�

ð2Þ

where β = (kBT )−1 is the thermal energy and Fn̂ is an effective in-
ternal force representing the self-propulsion.
D ¼ D?ðI � n̂� n̂Þ þ Dkðn̂� n̂Þ is the dumbbell diffusion
tensor, where D⊥ and D∥ are the transverse and longitudinal trans-
lational diffusion coefficients and I is the unit tensor. The rotational
dynamics are given byDr, the rotational diffusion coefficient, and T,
the effective torque promoting the circular motion on dumbbells.
Last, Gaussian noise terms ζ and ζθ for the displacement and the
orientation are added respectively. We observe an enhanced trans-
lation during DO and OO trajectories. On the other hand, the ro-
tational motion is diffusive, and angular diffusion coefficients are
obtained as (53)

Dr ¼ h½Δθ?ðtÞ�2i=ð2tÞ ð3Þ

Given the equations of motion (Eqs. 1 and 2), we can construct
the mean squared displacement MSD = ⟨[r(t) − r(0)]2⟩

MSD ¼ 2v2 Drt
ω2 þ D2

r
þ
e� DrtcosðωtÞ � 1

ω2 þ D2
r

�
2Drωe� DrtsinðωtÞ
ðω2 þ D2

r Þ
2

(

�
2ω2½e� DrtcosðωtÞ � 1�

ðω2 þ D2
r Þ

2

)

þ 4Dt

ð4Þ

The terms proportional to v2 measure the contributions of ori-
entational correlation to the MSD, while the translational diffusion
of the center of mass is proportional to Dt. The spin is driven by ω,
and the curvature of the orbital trajectories is due to the interplay
between ballistic motion due to v, loss of orientational correlations
due to rotational diffusion Dr, and spinning due to ω.

For a spinning dumbbell, v2

Dr
� Dt and ω ≤ Dr, the MSD reduces

to ∼4Dt. Equation 4 is recovered for a dumbbell exhibiting DO
motion where v2

Dr
� Dt and ω ≤ Dr. Last, for the OO trajectories,

MSD ≏ 2v2

ω2 ½1 � cosðωtÞ�, with v2

Dr
� Dt and ω ≫ Dr. MSDs in

Fig. 2C are fitted to obtain Dr from Eq. 4 using the experimentally
measured self-propulsion v and rotational ω velocities of dumbbells.
The extracted values of Dr are shown in Fig. 2F.

Coupling of drive and slipping leads to a nonmonotonic
angular velocity
Figure 2A shows the relation of the angular velocity ω = ∣Δθ∣/t with
the applied field E. Upon increasing the field strength, we observe a
nonmonotonic response of the angular velocity ω of a decay and
then an increase. In an opposite manner, the self-propulsion
speed v increases with the field until it reaches steadiness at E >
3 V μm−1 (Fig. 2D). Both the increase in v and the decrease in ω
have an impact on the orbit radius R = v/∣ω∣. In Fig. 2B, we
observe a nonmonotonic behavior, with a peak in R at E ≈
3.6 V μm−1. The spread in the radii of the orbits is presumably
related to the polydispersity of the two particles comprising each
dumbbell, as we believe that their different sizes contribute to the
orbital motion.

Fig. 2. Dynamics of dumbbells. (A) Angular velocity ω as a function of the field
strength E. Two regimes are identified: spinmotion (S; shaded region) appears with
low values of E, whereas DO and OO orbital trajectories emerge with increased E.
(B) Trajectory radius R for the different regimes obtained with E. (C) MSDs mea-
sured at different amplitudes of E. Symbols are from experiments and solid lines
are fits to Eq. 4. (D) Self-propulsion speed of dumbbells versus the field amplitude.
(E) Mean displacement of the trajectory central point rc. (F) Rotational diffusion
coefficient Dr obtained from fits in (C) using Eq. 4.
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We can find the center of every cycle θv ∈ {0,2π}, which corre-
sponds to one revolution. To do so, we take the center of the path of
the dumbbell around one cycle, which is defined as the point at
which direction of motion of the dumbbell is identical to that at
the start or end of the previous cycle. The center of each cycle is
termed rc. Each trajectory lasts around ttraj = 3.5 s. We take the dis-
placement of the center of each cycle, considered between the start
and end of the trajectory Δrc = ∣rc(ttraj) − rc(0)∣. Δrc is shown in
Fig. 2E, which shows the disordered nature of the orbital motion
compared to steady orbits at higher E (Fig. 2E). Note that this
motion is rather smaller but not totally negligible on the time and
length scales of the MSD in Fig. 2C).

This behavior contrasts with the rather steady radius in trajecto-
ries of asymmetric active particles (14). There, the angular velocity
ω increases linearly with the speed v, while R shows a nondependent
behavior on the self propulsion. Here, on the other hand, the depen-
dence of ω and R on E is opposite to the observations of active
spheres in a viscoelastic medium (54). Thus, our findings suggest
that the emerging circular behavior of Quincke dumbbells is due
to an effective internal torque and to the field-dependent speed v.

In some respects, the single-dumbbell behavior that we observe
is similar to that seen in the study of Zhang et al. (43), who studied
the collective behavior of pear-shaped Quincke rollers. In particular,

they also see a nonmonotonic persistence length, as a function of
field strength [figure 3D in (43)] is compatible with the nonmono-
tonic radius of curvature shown in Fig. 2A (inset), although the radii
of the orbital motion is very much larger in our case. However, the
sequence of states that they observed seems opposite to the single-
dumbbell behavior here, as they see spinners and vortices as a func-
tion of decreasing field strength, while we see spinners and DO and
OO motions as a function of increasing field strength. Given that
the particles in (43) are also Quincke rollers, we presume that the
difference in behavior is related to the different shape. In particular,
the aspect ratio of the particles in the work of Zhang et al. (43) is
much closer to that of a sphere than is the case for the dumbbells
that we consider here. We return to this point in the conclusion.

Dumbbell collisions: Hierarchy of “excited states”
Having a suspension of dumbbells performing DO motion, e.g., at E
∈ {2.5,3.5} V μm−1, we observe collisions between dumbbells that
lead to the formation of tetramers and more complex hexamers.
Figure 3A shows the sequential formation of these excited states.
First, isolated dumbbells collide and interact. If the collision is suc-
cessful in terms of alignment, then the result is an excited bound
state in the form of spinning tetramer of rhomboidal shape (see
Fig. 3B and movie S2). We term this state “excited” due to the in-
creased frequency of rotation (see Fig. 3H, inset) with respect to
unbound dumbbells at the same field strength. By analogy with
atomic systems, we term these states of a fixed number of bound
particles active colloidal molecules. We argue that this “excited
state” is due to the dumbbells colliding and being unable to move
past one another following the collision. That is, the particle geom-
etry enables dynamical self-trapping somewhat reminiscent of mo-
tility-induced phase separation (5), which, here, results in a
bound state.

For colliding dumbbells, we measure the angle ϕ made between
the orientations n̂?ij and velocities vij before collision and tetramer
formation. Figure 3E shows the distributions of the ϕn̂;v angles.
While the displacements exhibit a broader distribution, the success-
ful formation of tetramers is governed by the orientation of the
dumbbell trajectories. That is to say, the formation of tetramers is
achieved by dumbbells on a collision course and such that their ori-
entation angle ϕ → π and the displacements vi + vj = 0. For spherical
and pear-shaped rollers, alignment from hydrodynamic interac-
tions leads to the formation of collective phases, e.g., phased-
locked trajectories. On the other hand, the motion of the dumbbell
rollers described here is dominated by fast rotations that, in the
event of a collision, frustrate alignment interactions and orbital
trajectories.

We compare successful tetramer formation against other dumb-
bell collisions, confirming the strong dependence on orientation
(see inset in Fig. 3E). If unperturbed, then tetramers spin at a cons-
tant angular velocity ω and without notable displacement of the
center of mass Δr. The rotation results from the torque as the
center of propulsion from each dumbbell is not aligned with the
center of mass of the tetramer (Fig. 3B). Otherwise, any substantial
change in the orientation n̂? promotes tetramer breaking and rever-
sal to the circular motion of dumbbells. Figure 3H depicts the spin-
ning speed ω of tetramers as a function of E. We observe increasing
ω with the field as a result of the enhanced self-propulsion
v (Fig. 2D).

Fig. 3. Formation of tetramers and hexamers. (A) Active dumbbells performing
DO motion may collide with a consequent change in their trajectory. We take the
angle ϕ made between the orientations n̂ij and velocities vij to characterize the
collisions. (B) When aligned, two colliding dumbbells form spinning tetramers
whose motion results from the dynamical frustration exerted by one dumbbell
on the other. (C) The formation of hexamers is possible when a third dumbbell
collides with a previously formed tetramer. The resulting spinning motion of hex-
amers is also attributed to the dynamical frustration of single circular trajectories.
(D and E) Schematic representation of the Quincke rotation of dumbbells. Hydro-
dynamic coupling is schematically illustrated with the black arrows. (F) Formation
sequence of a hexamer. A tetramer is previously formed by two dumbbells. A third
dumbbell approaches with its orientation n̂k pointing toward the tetramer. Upon
collision, the dumbbells rearrange to form a triangular shape as indicated by the
orientations n̂ijk . Scale bar, 10 μm. (G) For dumbbells forming tetramers, the distri-
butions of ϕ indicate that the process is dominated by the dumbbell orientation
rather than the velocity. Inset shows the distribution of the orientation angles ϕ for
successful and unsuccessful formation of tetramers. (H and I) Spinning angular ve-
locities ω for (H) tetramers and (I) hexamers as function of E. Inset in (H) is the evo-
lution of the orientation angle θn̂ as the tetramer spins. Inset in (I) shows the mean
angular displacement 〈Δθ(t)2〉 of a spinning hexamer. E = 3.1 V μm−1.
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We presume that the mechanism for the coupling is related to
hydrodynamic interactions between the rotating dumbbells as indi-
cated in Fig. 3D. It is possible that parallels may be drawn with pre-
dictions for hydrodynamically bound states in other active systems
(30, 31), for example, the volvox algae in experiments (32). Note that
we only observe the formation of tetramers in the DO state. We
presume that this is because the translational motion of spinning
dumbbells is rather slow and so they do not collide; in the OO
state, the dumbbells tend to follow the same trajectory, so their
chance for collision is reduced also.

Hexamers: Unstable excited states
In a more complex scenario, spinning hexamers form because of the
self-trapping of three dumbbells. For this, an additional dumbbell
collides with a preexisting tetramer. A triangular hexamer results
from the local rearrangement of dumbbells, as represented in
Fig. 3, (B and C) (see also movie S4). Similar to tetramers, it is
likely that the process is governed by the dumbbell orientation
n̂?. In Fig. 3F, we show an experimental formation sequence of a
hexamer, where the orientations n̂i;j;k for each dumbbell are high-
lighted. We find a few spinning hexamers using the same values of E
as for the tetramers. This is given by the trajectories of individual
dumbbells (see Fig. 2, B and E). The spinning speed shows a
linear increase with E, suggesting a stronger coupling of the individ-
ual self-propulsion speeds v (Fig. 3I). In contrast to tetramers, the
breaking of hexamers shows no reversion, as any deviation of the
individual orientation n̂ leads to the segregation of the constituent
dumbbells (movie S3). Thus, the hexamers are much shorter-lived
than the tetramers. The break-up of the hexamer in movie S3 un-
derlines the complex hydrodynamic couplings in colloidal system
under dc fields.

We emphasize that the collision processes here are different to
the phoretic and hydrodynamic interactions of Janus particles (1)
and our Quincke rollers. The formation of tetramers and hexamers
is due to dynamical self-trapping, akin to systems displaying motil-
ity-induced phase separation (4). Therefore, the active pathway of
hierarchical states is distinctive from those observed in systems
with induced interactions (45).

Trimers: Flipping on a honeycomb lattice
We now proceed to describe the active motion of trimers, which are
rigid assemblies of three particles (Fig. 4A). Quite unlike monomers
or dumbbells, a trimer cannot simply rotate in response to the
applied field. Instead, they undergo a flipping motion, where the
trimer lies parallel to the substrate and from time to time flips
rapidly about one side. Hence, we identify a class of Quincke flip-
pers. This consists of a jump performed by one vertex over to the
opposite side, as represented in Fig. 4B (see movie S5). Such a jump
effectively instantaneously rotates the orientation by π about an axis
parallel to the triangle side and displaces the center of mass r by a
distance ℓ perpendicular to this axis. Assuming nonslip conditions,
ℓ ≈ 0.7σ. In between flips, there is continuous (possibly diffusive)
evolution of position and orientation. In the absence of evidence to
the contrary, it seems reasonable to assume that these two types of
motion occur independently.

The orientation of the trimer is specified by three Euler angles
(φ, θ, ψ). The first angle, φ, is between the body-fixed and space-
fixed x axes; we take the body-fixed x axis to point from the

trimer center toward a vertex (see Fig. 4A). The second angle, θ,
is a rotation about the body-fixed x axis. This takes values 0 and
π in the unflipped and flipped state, respectively, and, within the
instantaneous flip approximation, these are the only values of inter-
est. The third angle, ψ, may be taken to be zero. Assuming that the
dynamics do not depend on the flip state, we may focus on the angle
φ alone.

For a trimer with particle centers in an equilateral geometry, a
flip may be represented as φ → φ + Δφ, r → r + Δr, where Δφ =
± π/3, π corresponding to the three possible flip directions, and

Δr ¼ ‘½cosðφ � ΔφÞ; sinðφ � ΔφÞ� ð5Þ

In the absence of motion between flips, the center r of each
trimer would explore the vertices of a two-dimensional honeycomb
lattice. Successive flips may or may not be correlated, regarding the
time intervals between flips and/or the choice of successive flip di-
rections. The simplest model for the motion between flips is that the
trimers translate and rotate diffusively, obeying

_r ¼ ð _x; _yÞ ¼
ffiffiffiffiffiffiffi
2Dt

p
ðζx; ζyÞ and φ̇ ¼

ffiffiffiffiffiffiffiffi
2Dr

p
ζφ ð6Þ

where ζx, ζy, and ζφ are independent delta-correlated stationary
Gaussian processes with zero mean and Dt and Dr are the transla-
tional and rotational diffusion coefficients. An active (velocity) con-
tribution might be added to these equations, but such a term would
imply some breaking of triangular symmetry.

Figure 4 (C and D) displays experimental trajectories of a trimer
performing an essentially random walk at different activities. In
contrast to active spheres and dumbbells, trimers show reduced dis-
placement Δr due to the symmetry in jumps. For the range of field
strengths applied here, i.e., E ∈ {1.8,3.4} V μm−1, we find that the
motion of trimers is dominated by flips. To characterize any corre-
lation of the flips, we define an angle α made by two successive dis-
placements of the center of mass (see the diagram in Fig. 4D).
Having uncorrelated flips without rotation in between, the angle
made by Δr takes possible values +π/3, −π/3, or π occurring with
equal probability. For α (as defined in Fig. 4D), the angles for the
three previous cases are 2π/3, 2π/3 (again), and 0. Then, we find a
reasonable approximation at lower field strength, as shown in
Fig. 4C, albeit with a larger peak at α ≈ 2π/3. Upon increasing E,
we observe weakening of the bimodal nature of the distribution as
the distribution of α shifts to 0, showing an enhanced anisotropic
motion, as displayed in Fig. 4D. That is, upon increasing the field
strength, the trimers exhibit a greater tendency to flip forward and
back. In addition, the increase in E yields an increasing flip rate, as
shown in Fig. 4E. The increasing correlation of flips might be given
by any small asymmetry in the shape, i.e., spheres of different sizes,
which, together with the increased field, result in linear regions of
the trajectory (see inset in Fig. 4D).

With the above observations in mind, it is possible to devise a
dynamical model of the trimer, based on continuous (possibly dif-
fusive) motion, punctuated by instantaneous flips (possibly incor-
porating the correlations just discussed), to compare with
experiments (55–64). This model is discussed further in the Supple-
mentary Materials (51). Here, we focus on isolating the continuous
motion and determining whether it is diffusive. Using the facts that
the flips are rapid and produce displacements Δr and Δφ that ap-
proximately satisfy Eq. 6, it is possible to remove the effects of the
flips from the experimentally observed trajectories, leaving just the
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continuous evolution of r(t) and φ(t). We refer to these as filtered
trajectories. We emphasize that this is an artificial procedure, only
likely to be successful if the two types of motion are sufficiently
independent.

MSDs of filtered trajectories obtained at different field strengths
E are shown in the inset of Fig. 4F. The curves can be fitted by
〈Δr(t)2〉 = 4Dtt, and values for the effective diffusion coefficient Dt
are shown as a function of E in Fig. 4F. At first sight, it may seem
unexpected that the effective diffusion coefficient decreases as a
function of field strength, while the activity increases. We believe
that this is due to an increased tendency to flip forward and back,
as indicated in Fig. 4D. This then suppresses the displacement of the
center of mass of the trimer, leading to the reduction in the effective
diffusion constant. The filtering that we carry out has no impact on
this behavior.

Reorientation in the plane is analyzed by means of time correla-
tion functions of φ and again extracted from the filtered trajectories

CmðtÞ ¼ hcosmΔφðtÞi ¼ expð� m2DrtÞ ð7Þ

where Δφ(t) = φ(t) − φ(0), the change in angle due to nonflip
motion only, m is the rank, and the last expression is expected for
pure rotational diffusion with coefficient Dr (56). In Fig. 4G, we
show results for m ≤ 6 at one value of E. In the inset of Fig. 4H,
the same data collapse onto a single curve m−2 ln Cm(t) versus t,
allowing an estimate of Dr. Rotational diffusion coefficients Dr as
a function of E are shown in Fig. 4H. Translational and rotational
diffusion seems to satisfactorily describe the motion between flips.
We find decay of both Dt and Dr as we increase E. It is important to
recognize that perfect separation of flips and diffusion may be

impractical (in reality, there is a distribution of flip distances and
directions, and the trimers are not perfectly equilateral triangles).
Hence, the measured “diffusion” coefficients may include residual
contributions from the flips. If this is the case, then the decrease in
Dt and Dr with increasing E might be connected with the increased
importance of the α = 0 peak, i.e., correlated forward and backward
flips, at higher E, indicated in Fig. 4D.

DISCUSSION
In summary, we have investigated active motion of dumbbells and
trimers powered by Quincke rotation. The orbital motion and the
flipping behavior of these nonspherical particles are markedly dif-
ferent from that observed in rolling colloids. For both cases, the be-
havior is controlled by the applied electric field. The motion of
dumbbells observed experimentally at intermediate activity is in
agreement with the theoretical description of a circle swimmer (49).

In the case of single Quincke dumbbells, as a function of increas-
ing field strength, we observe spinners with no translational active
motion, followed by states of DO and then OO motions. This
motion transforms into the emergence of spinning tetramers and
hexamers as dumbbells collide with each other. This corresponds
to the formation of excited bound states arising from the hydrody-
namic coupling of dumbbells. The persistence length inherent in
the motion of Quincke Rollers leads to a dependence on the trajec-
tories of the incoming dumbbells and particularly on the collision
angle ϕ (Fig. 3A). Such a dependence is absent from the over-
damped dynamics of passive colloidal systems, and the exotic
excited sates that we find are reminiscent of long-lived complexes
formed by collisions between molecules but at the colloidal length-
scale and, of course, with classical interactions (29). It is possible
that at higher concentrations of dimers, a collective demixing rem-
iniscent of motility-induced phase separation (MIPS) might be ob-
served, similar to that seen for some other anisotropic colloids (42),
although a full understanding would likely need to include the hy-
drodynamic interactions between dumbbells and the spinning tet-
ramer and hexamer excited states. Last, we have shown the flip
behavior of trimers, which is described by means of a jump-diffu-
sion model. We have implemented a minimal model and leave the
detailed mechanism for the future. Under our assumptions, the
model reproduces the experiments rather accurately.

Our findings contrast with collective behavior in a system of
pear-shaped Quincke rollers in (43), who found a phase of particles
also exhibiting orbital motion. However, they do not appear to find
anything similar to the spinning state that we find at lower field
strength. Furthermore, they do not report coupling of pairs of par-
ticles, so that system seems not to exhibit behavior similar to the
excited bound state of tetramers and hexamers that we observe
(Fig. 3). We presume that the reason for this is the geometry of
the pear-shaped particles whose aspect ratio is closer to that of a
sphere and, moreover, does not appear to enable locking of colliding
particles. In addition, for geometric reasons, the hopping of the
trimers reported here is not found in the pear-shaped particles.
The disk-shaped particles in (42) seem to be able to transiently
form bound states reminiscent of the tetramers that we observe.
This is consistent with their relatively large aspect ratio. However,
they do not seem to interlock, and perhaps as a consequence, these
states are shorter lived than the tetramers. The role of particle shape

Fig. 4. Quincke trimers. (A) Top: SEM micrograph of a Quincke trimer. Scale bar,
5 μm. Bottom: Trimer body frame. The orientation n̂ of each vertex is given by an
angle φ formed with respect to a reference axis and each vertex position. (B) Sche-
matic representation of the flip motion performed by active trimers. Every jump
corresponds to a leapfrogging mechanism of one vertex over the opposite side
of the trimer, which takes the trimer out of the plane close to the substrate. (C)
Distribution of flip angles α for a trajectory E ≈ 2 V μm−1, shown at the inset. (D)
A trimer trajectory dominated by flips at E ≈ 3.33 V μm−1 (inset) shows a strong
distribution of α → 0. (E) Flip rate as function of the electric field strength E. (F)
Effective translational diffusion coefficients Dt obtained from filtered trajectories.
Inset shows diffusive MSDs. Arrow indicates increase in E. (G) Reorientational time
correlation functions for six different ranksm as defined in the main text. Symbols
are obtained from experimental trajectories at E ≈ 2 V μm−1, and dashed lines are
fittings from Eq. 7. Inset in (H) displays the collapsed scaled functions for the same
data shown in (G). Solid line is a fitting using the mean rotational diffusion coeffi-
cient Dr extracted from the fits in (G). (H) Effective rotational diffusion coefficients
Dr versus the applied electric field strengths.
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in influencing interactions and assembly in Quincke rollers and
other active particles is clearly an intriguing topic for the future.

The experiments that are now possible with this system may be
beneficial for the investigation of different types of motion as en-
countered in nature, as well as for the design of nonequilibrium
self-assembly routes, and to provide a readily observable classical
analog of collisions and excited states in molecules. In particular,
our work opens the way to active supracolloidal chemistry. Other
geometries of cluster in addition to dumbbells and trimers could
be explored (23). Here, we have considered the dilute limit with
pairwise collisions and interactions. A particularly interesting
avenue to explore would be higher concentration, which has been
achieved in the case of (passive) colloidal dumbbells (65) and aniso-
tropic active colloids with other geometries (42, 43), with which pre-
dictions from computer simulation might be explored (39).
Inclusion of active control (17) opens even more exciting
possibilities.

MATERIALS AND METHODS
Colloidal molecules are prepared as follows. We use polystyrene
beads (Fluoro-Max, Thermo Fisher Scientific) of size σ = 3.1 μm
and a polydispersity of 5% as determined by scanning electron mi-
croscopy (SEM). The initial suspension is aqueous. Colloids are re-
peatedly washed with a 0.15 M solution of dioctyl sodium
sulfosuccinate (AOT) surfactant in hexadecane. In the absence of
a steric stabilizing layer, colloidal clusters form because of van der
Waals attractions. We obtain a mixture of clusters as the aqueous
solvent is replaced by the low polar solution. Centrifugation is
used to separate small clusters, i.e., dumbbells and trimers, from
the rest of the suspension.

For the experiments, a dilute mixture of clusters is loaded into a
sample cell fabricated with conductive indium tin oxide–coated
glass slides (ITOSOL-12, Solemns). Two slides are separated by a
30-μm-thick spacer made of optical glue and larger beads. An am-
plified (Trek 606E-6) dc electric field E is applied to the suspension
to observe the Quincke electrorotation of colloids (3). Image se-
quences are obtained at 660 frames/s using bright-field microscopy
(Leica DMI 300B) and a digital camera (Basler ACE). The mono-
mers, dumbbells, and trimers appear to be colloidally stable on
the time scale of the experiment. That is to say, we saw no sign of
aggregation nor any change in the populations of any of the
three species.

Supplementary Materials
This PDF file includes:
Figs. S1 and S2
Legends for movies S1 to S5

Other Supplementary Material for this
manuscript includes the following:
Movies S1 to S5
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