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ABSTRACT
The transport of active particles may occur in complex environments, in which it emerges from the interplay between the mobility of the
active components and the quenched disorder of the environment. Here, we explore the structural and dynamical properties of active Brow-
nian particles (ABPs) in random environments composed of fixed obstacles in three dimensions. We consider different arrangements of the
obstacles. In particular, we consider two particular situations corresponding to experimentally realizable settings. First, we model pinning
particles in (non-overlapping) random positions and, second, in a percolating gel structure and provide an extensive characterization of the
structure and dynamics of ABPs in these complex environments. We find that the confinement increases the heterogeneity of the dynamics,
with new populations of absorbed and localized particles appearing close to the obstacles. This heterogeneity has a profound impact on the
motility induced phase separation exhibited by the particles at high activity, ranging from nucleation and growth in random disorder to a
complex phase separation in porous environments.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0131340

I. INTRODUCTION

Active matter concerns systems comprised of individual bodies
undergoing motion via self-propulsion.1 This description encom-
passes a plethora of systems over a wide range of lengthscales
from bacteria,2–4 biological microswimmers,5 schools of fish,6 bird
flocks,7 to human crowds.8 While these systems can all be classified
as active matter, accurate models must be tailored to the specifics of
each system and its environment. One class of much simpler model
systems that, nevertheless, capture the key elements of the behavior
of more complex systems is active colloids.9–12

Yet, if we are to apply such model systems in a biological con-
text, it is essential that we study the dynamics of active particles
in environments that are relevant to their real-world counterparts.

For biological active matter on mesoscopic lengthscales, this means
environments such as porous soils13 and organic tissues.14 Envi-
ronments such as these have several qualities in common; they
are often crowded, random, and irregular. This, of course, has an
impact on the transport or displacement of the active bodies inside
these spaces;9 for example, in the (biological) case of bacteria, their
run-and-tumble dynamics can be drastically altered.15,16

In equilibrium systems, the dynamics of fluids in dense and
complex environments has long been an area of interest. For exam-
ple, the inclusion of specific structures into dense fluids has proven
significant for progress toward understanding the glass transition
and in liquids.17,18 Furthermore, the addition of randomly pinned
particles within a dense ensemble is known to greatly slow down
the dynamics of such systems, providing access to rare states.19–22
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A special kind of localization has been explored in glass-forming
systems23,24 and may be realized using colloidal systems.25–27 Here,
pinning, i.e., immobilizing a fraction of the particles, provides
access to the so-called ideal glass, a putative amorphous state
of very low configurational entropy whose diverging timescales
render it otherwise inaccessible to experiments or computer
simulations.28

For active systems, in the simplest case of a confining wall,
self-propelling spheres will accumulate at a wall as a consequence
of the timescale of their persistent motion, even in the absence
of hydrodynamic interactions.29,30 For many-body systems in two
dimensions, the influence of disordered landscapes on the dynam-
ics of active systems has been shown to manifest in clogging and
localization transitions,31–33 subdiffusion over long timescales,34–36

destruction of flocking clusters,37 suppression of Motility-Induced
Phase Separation (MIPS), and prevention of uniform wetting at
boundaries.38 Furthermore, the manipulation of complex environ-
ments has been shown to provide a degree of control over the
transport of active matter in the form of sorting39 and over the
intriguing phenomenon of topotaxis (control over net flow direc-
tions by controlling the topology of the environment40,41). Active
Brownian particles (ABPs) exhibit rich phase behaviors, such as
MIPS42,43 and the formation of active crystals,44,45 and fundamen-
tal properties—for example, pressure and the equation of state
differ drastically from what might be expected from equilibrium
systems.46–48

However, the question of how active Brownian spheres cou-
ple to a complex surrounding environment remains unanswered.
Recently, there has been interest in experiments with mesoscale
active matter in 3D. In one study, a random heterogeneous environ-
ment was found to impose strong inhibitions on the active transport
of bacteria,15 and in another study, the impact of dimensionality was
made clear, with the dominance of three-dimensional structure in
the presence of an anisotropic potential.49 This latter example is a
well-controlled 3D colloidal model system that provides the inspi-
ration for our work because it is possible to confine such systems
using pinning26,50 or allowing a subset of particles to undergo gela-
tion.51 Insights into the transport of active matter in 3D complex
environments could provide a major step toward the control of
such systems and aid in the progress toward applications such as
drug delivery.

In the present article, we perform three-dimensional molecular
dynamics simulations of active Brownian particles in complex het-
erogeneous environments. To model such environments, we choose
two example structures, which, as noted above, may be realized in
the experiment: a random homogeneous array of pinned particles,
providing an extension of disordered random obstacle studies to 3D,
and a continuous, percolating porous network (a gel), simulating
the complex environments typical of active matter under confine-
ment. Furthermore, we will investigate the structural and dynamical
properties of ABPs within these structures, with a focus on phase
separation and how this varies from the MIPS observed in bulk
suspensions.

This article is organized as follows: in Sec. II, we outline the
computational methods used to study these systems; in Sec. III, we
discuss the results of the simulations; and finally, in Sec. IV, we will
summarize and conclude our findings and discuss the future work
in this area.

II. MODEL AND METHODS
A. Active particles

We model active colloids as active Brownian particles, which
propel with a constant velocity V0 along their individual direc-
tion vectors e, which, in turn, are subject to rotational diffusion.
We implement this model through molecular dynamics simu-
lations using a customized version of the open source Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
package,45,52 which integrates the following equations of motion:

ṙ = V0e + βDTF +
√

2DTη, (1)

ė =
√

2DRξ × e. (2)

Here, ṙ is the particle velocity, V0 is the magnitude of the constant
active velocity, and F is the inter-particle force. The thermal fluctua-
tions promoting translational diffusion are included in the Gaussian
white-noise term η, where ⟨η⟩ = 0, and DT is the translational dif-
fusion coefficient. The thermal noise driving rotational diffusion of
the direction vector e is represented by an independent Gaussian
noise term ξ, where ⟨ξ⟩ = 0, and DR is the rotational diffusion coef-
ficient. The two diffusion coefficients are related via DT = DRσ2/3,
where σ is the particle diameter. Time is scaled in units of the
characteristic rotational diffusion time τR = 1/(2DR).42 The active
particles are modeled as being similar to hard spheres, and to achieve
this, we include a Weeks–Chandler–Andersen (WCA) inter-particle
potential, which takes the form

βu(rij) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4βε
⎡⎢⎢⎢⎢⎣
( σ

rij
)

12

− ( σ
rij
)

6⎤⎥⎥⎥⎥⎦
+ βε, rij ≤ 2

1
6 σ,

0, rij > 2
1
6 σ,

(3)

where ε = 5 is the interaction strength, rij is the inter-particle dis-
tance, and β = 1/kBT is the thermal energy. Since we use the WCA
interaction, it is hard to define a volume fraction. Methods that
determine an effective diameter, such as Barker–Henderson,53 may
not hold outside of equilibrium systems. Therefore, as in Ref. 54, we
use the total density ρ = N/V , where N is the number of particles
and V is the volume of the system.

We use the Péclet number to refer to the relative strength of the
activity in the system, which we define as Pe = V0/σDR. Throughout
this work, we keep DR constant via DT = 1 and vary Pe by changing
the propulsion velocity V0.

Simulations are performed with periodic boundary conditions.
The majority of the work is carried out in a cubic box of dimen-
sion length L = 55σ, with a total number of N = 144 000 particles. In
some cases, there was a need to sample from many state points, and
for these, a smaller system was used, where L = 27.5σ and N ranges
from 18 000 to 24 000. Analysis at a constant density is always con-
ducted at ρ = 0.87. This state point is chosen such that it lies below
the freezing line in the bulk.

B. Complex environments
The complex environments relevant to microscopic biological

systems are often irregular and random in nature. To investigate the
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FIG. 1. Preparation of complex environments for ABPs. (a) Percolating gel network at a number density ρ = 0.38. (b) Cross section through the gel network of depth 2σ. (c)
A collection of randomly pinned obstacles at ρ = 0.31. (d) Cross section through the random obstacles of depth 2σ. (e) and (f) Gel network (gray) filled with active particles
(blue) to a total density ρ = 0.42. (g) and (h) Random obstacles filled with active particles to a total number density ρ = 0.42.

dynamical properties of ABPs under these conditions, one must pre-
pare obstacle geometries that satisfy these requirements. Here, we
consider two primary structures: porous gel networks and randomly
pinned particles. As noted above, these may be realized in experi-
ments. In addition to these, we include simulations studying the bulk
dynamics of ABPs as a reference and these bulk simulations use the
approach outlined in Sec. II A.

In Sec. II B 1, we describe how the two complex environments
are created and characterized. A schematic depicting these two envi-
ronments is displayed in Fig. 1, featuring 3D renderings of each
environment type along with a cross-sectional slice. The porous gel
network [Figs. 1(a) and 1(b)] is a heterogeneous system comprised
of two distinct meso-phases that percolate through the entire sim-
ulation box comprised of a particle-rich phase and a particle-poor
phase in which, for our parameters, no particles are found. The ran-
dom environment [Figs. 1(c) and 1(d)] is comprised of randomly
pinned particles that create a number of discrete obstacles dispersed
throughout the system.

1. Preparation of a porous network
In this work, the porous network is modeled as a colloidal gel,

specifically a colloid–polymer mixture.55,56 We do this because we
seek to connect our work to experiments where such a network
could be realized.49,56 Therefore, the preparation protocol in our

simulations is as close to the one that might be experimentally real-
izable as possible. For suitable parameters, colloids with such an
attractive interaction begin to phase separate via spinodal decompo-
sition, which is then arrested, leaving a bicontinuous network, i.e., a
gel.56,57 The (polymer-induced) attraction between the colloidal par-
ticles that would be used in an experiment is here modeled with the
Morse potential,58,59

βu(rij) = βε exp[a0(σ − rij)](exp[a0(σ − rij)] − 2), (4)

where a0 = 33 is a range parameter.
To create the gel structures in simulation, we begin with par-

ticles in a simple cubic crystal at the desired number density and
then evolve this system according to Brownian dynamics [Eq. (1),
for V0 = 0], with the particles interacting via the Morse potential
Eq. (4). This system is then evolved for 5 × 107 integration steps,
which is equivalent to 1200τB after which the system is frozen and
no further movement is allowed. Here, τB is the Brownian time
τB = (σ/2)2/6DT . An example of the resulting gel is shown in
Figs. 1(a) and 1(b).

With the gel in place, the positions of the free particles are
initialized via the Lubachevsky–Stillinger algorithm.60 This method
comprises the following steps: first, initial particle positions are ran-
domly assigned. Then, the particles are slowly grown and displaced
from an initial diameter σin = 0.1 to the desired diameter σ = 1 such
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that these particles experience minimal overlaps with themselves
and with the frozen gel particles. Additionally, to guard against the
presence of any small but sufficient remaining particle overlaps, a
pre-run simulation with a soft potential is performed,

u(rij) = A[1 + cos(πrij

rc
)] rij < rc, (5)

where rc = 2
1
6 is the potential cutoff and the constant A is ramped

from 0 to 100 over 1.2τR without activity. Following this, the sys-
tem is equilibrated again without activity, for particles following the
equations of motion outlined in Eqs. (1) and (2), and the WCA inter-
particle potential Eq. (3). A low density example of this system is
shown in Figs. 1(e) and 1(f).

2. Random pinning
For the random pinning case, an arbitrary configuration of

particles is generated in the simulation box at the desired density.
These particles then follow Brownian dynamics with the soft poten-
tial Eq. (5) to eliminate any significant overlaps before the system is
equilibrated with the WCA potential. A fraction of the particles is
then chosen at random and frozen. This creates the random obsta-
cles. This fraction is chosen such that the volume accessible to the
free particles is the same in both the gel network and the random
pinning systems [Figs. 1(c) and 1(d)].

The fixing of the accessible free volume of the mobile particles
enables the comparison of observables in both environments. Fix-
ing this is a necessary step as the difference in structure between the
gel network and the random pins could result in the free particles
operating at two different effective densities in the case of the same
number of frozen particles.

For this, the density of the gel network is held constant and
the number of pinned particles is varied as a function of the total
density ρ. The total free volume available to the mobile particles is
determined by taking the Voronoi tessellation of the instantaneous
configuration and associating with each particle the volume of its
Voronoi cell V i

voro. The sum of these volumes provides the total
volume accessible to the free particles∑N

i V i
voro, which are then aver-

aged over ten independent simulation runs. This information is used
to determine the fraction of particles to be pinned such that∑N

i V i
voro

for the free particles in the pinned system matches that of the porous
gel network at the same density.

3. Lengthscales in the complex environments
The interplay between the lengthscale of the two environments

and the persistent motion of the active particles will have a large
impact on the dynamics. Therefore, to characterize the lengthscale
the obstacles impose on the active particles, we will use the pore
chord length. The chord length is a measure of the distance between
two interfaces in a homogeneous phase of a heterogeneous system.
A chord is defined as the distance between two interfaces in a het-
erogeneous system, where the chord lies wholly within one phase.
The chord length distribution p(ℓ) defines the probability of find-
ing a chord of length between ℓ and ℓ + dℓ within one phase. We
characterize the environments in this work by the mean pore chord
length ⟨Lc⟩. In practice, this is determined by measuring chords of
varying lengths along each axis of the three-dimensional sample
that lie wholly within the pore phase.61,62 The mean chord length

was measured and averaged for six independent configurations for
each environment species. The gel networks have a mean pore
chord length ⟨Lc⟩ = 6.62σ, whereas for the random pinning system,
⟨Lc⟩ = 3.24σ, almost half that of the gel system. The difference in this
measurement derives from the arrangements of the particles com-
prising these structures: in the case of the gel, particles are arranged
locally into dense branches, and therefore, the branches provide
the relevant lengthscale in this system. Conversely, in the random
system, the particles are arranged in a non-overlapping random con-
figuration and the surrounding free space is then dependent on the
shorter lengthscale of the average particle separation.

C. Dynamical analysis
The addition of obstacles into dense fluids greatly influences the

dynamics, and in some cases, a system may become arrested. The
structural relaxation time τα provides a useful metric that one can
use to understand the variation of timescales across different state
points and environments.

The relaxation time τα is determined via the self-part of the
intermediate scattering function

Fs(k, t) = 1
N
⟨

N

∑
j=1

exp[ik⃗ ⋅ (r⃗j(t) − r⃗j(0))]⟩, (6)

where k⃗ is the wavevector k = ∣k⃗∣, taken as 2π. We define τα as Fs
(k = 2π, τα) = e−1. Here, the index j runs over all the particles.

The persistent motion of active particles induces clustering and
aggregation at boundaries. This will likely cause density fluctua-
tions where some fraction of particles are in dense and crowded
regions, while others are in locally dilute regions. To quantify the
degree to which these variations are taking place within different
environments, we use the four-point dynamic susceptibility χ4. To
calculate χ4, we follow the methodology of Lačević et al.63 For this,
one must first define an overlap function w(∣rj(0) − ri(t)∣), where i
and j are particle indices. This measures the degree of spatial similar-
ity between the configurations of a system as a function of time. The
overlap is unity inside a region ∣rj(0) − ri(t)∣ ≤ a and 0 otherwise,
where a = 0.3σ. The fraction of overlapping regions in a system of
particles at times 0 and t is given by

Q(t) = 1
N

N

∑
j=1

N

∑
i=1

w(∣rj(0) − ri(t)∣). (7)

The fluctuation of Q(t) then defines χ4. This quantity is a
susceptibility and measures dynamic heterogeneity,64

χ4(t) =
V

N2kBT
[⟨Q2(t)⟩ − ⟨Q(t)⟩2]. (8)

III. RESULTS
This section is organized as follows: we first characterize the

dynamical behavior at low activity characterized by the Péclet num-
ber. We then move on to moderate activity, where significant
structural changes are observed, related to motility induced phase
separation. We characterize these with a number of measures—one-
body measures, such as the Voronoi volume associated with each

J. Chem. Phys. 158, 104907 (2023); doi: 10.1063/5.0131340 158, 104907-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 2. Structural relaxation time (τα)
as a function of number density ρ and
Péclet number Pe. Here, we consider
the bulk, gel network, and random pin-
ning systems from left to right. Colors
indicate the common logarithm of τα.
Crystalline states are marked in white.
The number density ρ = 0.87 is empha-
sized with a black dotted line. Due to the
large amount of sampling required, these
data were measured using the smaller
simulation box size.

particle, and many-body properties, accessed with the topological
cluster classification.68 Finally, we probe the case of very high activity,
where we observe a re-entrant mixing.

A. Low Pe : Crystal suppression and heterogeneous
dynamics
1. Structural relaxation

As mentioned in the Introduction, active systems can undergo
a localization transition in the presence of quenched disorder. This
phenomenon is often only present in the homogeneous phase, i.e.,
for activity below that associated with the boundary of motility-
induced phase separation. To assess the extent to which complex
environments impose localization on active Brownian particles, we
measure the structural relaxation time (τα). This enables us to deter-
mine the regimes in which these systems become arrested. Figure 2
shows the variation of the structural-relaxation time in the bulk, gel
network, and random pinning systems as a function of Pe and total
number density ρ.

In the bulk system (Fig. 2, bulk), the particles will crystallize
for state points that fall below the freezing line. This crystal regime
was previously studied, from which the data for this phase bound-
ary originate.45 Outside of the crystalline regime, the active particles
exhibit a monotonic decrease in τα as Pe rises for a given density,
which is qualitatively similar to a temperature increase in passive
systems.65

With the addition of a complex environment, there is an emer-
gence of slow dynamics distinct from that of the crystal in the bulk
system. Figure 2 (gel and random) shows the variation in τα for the
gel network and the random pins, respectively. Comparing the two
panels, we can see that the two systems operate on significantly dif-
ferent timescales, with the system with random obstacles exhibiting
slower dynamics than the gel network for the majority of state points
considered. Both the gel network and the random pinning systems
exhibit structural relaxation times in excess of 105τR at high densi-
ties, plotted as the darkest blue contour. These are state points that
will not relax within the maximum run-time of the simulations and,
thus, for the purposes of this work, we define these as arrested. In this
arrested regime, active particles are localized due to the constraints
imposed by the gel or the pins, even at Péclet numbers of the order
of 10 for dense ensembles in the random pins.

2. Dynamic susceptibility
The interplay of the complex environment and the self-

propulsion will cause a degree of dynamical correlation in these
systems, as clusters of active particles become aligned or absorbed
at the boundaries. The dynamic susceptibility χ4 provides a measure
of this, and it is plotted for the three systems in Fig. 3. The dynamic
susceptibility manifests a peak at the timescale for which the parti-
cle dynamics are maximally correlated on the chosen lengthscale a
[Eq. (8)]. This measure shares some similarities with the structural
relaxation time. For example, in the passive systems (Pe = 0), the
positions of the peaks indicate the same relationship as measured in

FIG. 3. Dynamic susceptibility χ4 is measured in the three systems at ρ = 0.87
and at Pe = 0, 10, and 40 in panels (a)–(c), respectively. The time corresponding
to the peak of χ4 relates to the timescale of maximal dynamical correlation, and the
height corresponds to the number of particles involved in dynamic heterogeneities.
Due to the large amount of sampling required, these data were measured using
the smaller simulation box size.
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τα in Fig. 2, with the gel system being the fastest, followed by the bulk
and then the random system coming significantly later. At low activ-
ity (Pe = 10), these peaks become more clearly defined and move
to shorter times. Furthermore, the relative positions of these peaks
switch, with the dynamic correlations in the bulk system happen-
ing on a shorter timescale than the complex environment systems.

Finally, at a higher Pe (the regime of motility-induced phase separa-
tion), the dynamic correlations are appreciably more prominent in
the bulk system. Conversely, it is clear that for the gel and random
system, χ4 does not fully relax on the timescales we probe, as the
environment enforces some degree of dynamical correlation over
long timescales.

FIG. 4. (Left) 3D snapshots of the three
systems at Pe = 100. Particles are col-
ored by their Voronoi volumes (Vvoro),
and obstacles are not rendered. (Right)
A slice through each system (depth 4σ).
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B. Intermediate Pe : MIPS in random environments
From the results presented in Sec. III A, it is clear that the dif-

ferent confinement types cause significant and varying perturbations
to the dynamics of active systems at low Pe. What remains unclear is
the mechanism by which active particles overcome localization due
to the environment and what behavior these particles exhibit when
driven toward higher Péclet numbers, particularly in the regime of
motility-induced phase separation (MIPS). Compared to the length-
scale of MIPS, we know that the complex environment restricts the
active particles to motion over shorter lengthscales; from the chord
length measurements, the confining lengthscale is 6.62σ in the gel
and 3.24σ in the case of random pinning.

We use the individual particle Voronoi volumes (Vvoro) as a
measure of the local density to provide insights into the relation-
ship between self-propulsion and complex environments. Figure 4
displays the representative snapshots of the bulk, gel network,
and random pinning systems in the steady-state at an activity of
Pe = 100, alongside a slice through each system. In the bulk system
(top panel), the particles have undergone motility-induced phase
separation. Within the large dense region are particles (colored dark

blue, which have Vvoro ≤ 0.8 in Fig. 4), clustering due to their persis-
tent motion, which are surrounded by a gas of active particles at a
lower density.

Figure 4 (middle panel) displays the behavior of active particles
in the gel at high Pe. The structure of the gel is non-trivial featur-
ing extreme variations in surface curvature and channel width. It is
clear that this has a strong impact on the dynamics, with a distinct
pattern emerging, which is clearly dependent on the gel structure.
In particular, MIPS leads to a highly complex structure, with some
pores being filled by the slow/dense phase and others by the fast/less
dense phase. The location of the regions, which acquire a low or
high density under MIPS, is fixed by the initial configuration, with
independent runs always exhibiting the same demixing pattern.

The influence of the random pinning (bottom panel) on the
active particle dynamics at a high Pe is distinct from that of the
bulk and gel systems. Here, the particles phase separate into a large
cylindrical droplet somewhat akin to the bulk system. However, this
droplet has random pins throughout its structure holding the dense
phase in space. Furthermore, the presence of the random pins brings
about an unexpected result: the arrangement of the random pins
pre-defines the location in which the dense MIPS phase will form.

FIG. 5. Heat map of Voronoi volumes
and single particle displacements in
the gel network (left) and random pin-
ning (right) systems, respectively. Note
that displacements are measured over
Δt = 6τR. All systems are at ρ = 0.87,
and Pe = 100.
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For the same configuration of pinned particles but distinct alter-
nate initial positions and velocities; MIPS occurs in roughly the same
region of the system, with only small fluctuations from run to run.
Therefore, we believe that the location of the MIPS is somehow
encoded in the initial positions of the randomly pinned particles.

The three-dimensional snapshots in Fig. 4 provide a good indi-
cation of the phase behavior of these systems. However, they do not
contain any information on the stability of the dense phase. There-
fore, in Fig. 5, we plot the average Voronoi volume ⟨Vvoro⟩ as a
function of space in both the gel network and random pinning sys-
tems. These plots give information regarding the way in which each
system phase separates. For the gel, the inclusion of the network into
the space does not allow for the formation of a single dense droplet
as seen in bulk systems experiencing MIPS. Instead, the structure of
the gel determines the locations in which the system will phase sepa-
rate. Given the disordered nature of the gel, there are sections where
the pores are more constricted, have a tighter curvature, or are less
connected; these are the locations that will trap active particles. The
spatial distribution of ⟨Vvoro⟩ in the random pinning system tells an
alternate story. The active particles in this system at a sufficient Pe
will form a large droplet around a subset of pinned particles. The
random pins in this droplet keep it stable over long time periods in a
steady state where particles are exchanged between the droplet and
the surrounding active gas.

The Voronoi volumes give information into the phase sep-
aration of these systems but not into the transport dynamics of
the individual particles in this environment. Some insight into this
aspect can be gained by looking at the average single-particle dis-
placements ⟨Δr⟩ for the same system. The distributions of ⟨Δr⟩ are
plotted in Fig. 5 for displacements over the time period t = 6τR,
which is a time period of the order of τα in the passive bulk system at

this density. For the gel system, these displacements are largely uni-
form in the wider channels. Close to the surfaces of the gel particles,
the displacements are significantly less, indicating shorter move-
ments along the surface. Furthermore, there are several locations
where particles are localized with displacements less than the particle
diameter. These are all located in regions of high surface curvature.

For displacements in the random system, there are four identifi-
able populations of particles, each with its distinct environment. The
first is the group of localized particles. These are particles that have
become trapped between the random pins and other particles in the
dense phase and are recognizable as the dark spots dispersed through
the dense phase. These are surrounded by the second group of parti-
cles that are not localized but remain trapped within the dense phase
and are moving very slowly (Δr < σ). Beyond this are particles in the
interface, which undertake mid-range displacements. Finally, out-
side the dense phase is the active gas where particles are completing
relatively large and uniform displacements.

1. Time-evolution of MIPS in random pinning
Our protocol enables us to investigate the process by which the

system undergoes MIPS. To this end, we show a time sequence of
snapshots of a pinned system undergoing MIPS. In Fig. 6, we show
the formation of MIPS, starting from the passive WCA system as
described in Sec. II. Here, we consider the same state point as in the
previous figures (ρ = 0.87, Pe = 100) and plot the Voronoi volumes
as in Fig. 5 (top row). The time evolution of these data is also shown
in the supplementary material.

At time t = 0, we see that the system is largely uniform in den-
sity. Visual inspection indicates the following. Even at quite small
times (t ≲ τR), there are fluctuations in density, which are small,
both in the change of local volume per particle and also in their

FIG. 6. Time-evolution of the pinned system undergoing MIPS. The state point is that of Fig. 5 (right), ρ = 0.87, and Pe = 100. The color map represents the Voronoi
volumes of the active particles, and the pale yellow particles are the pinned particles. Each snapshot is taken at the time noted underneath from the start of active motion.
Data are taken from a slice of depth σ.

FIG. 7. Probability density of the Voronoi volumes (Vvoro)
for the bulk, gel, and random pinning systems, respectively.
All systems are at ρ = 0.87, and various values of Pe are
considered (see the figure legend).
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spatial extent. Over time, the larger fluctuations (in terms of their
spatial extent) appear to grow at the expense of smaller fluctuations,
and even at a quite short time of 10τR, the pattern seems to be largely
fixed. Longer times correspond to an increase in density difference
between the particle-rich regions (blue) and the more dilute regions.
In this time regime, the interface between these regions becomes bet-
ter defined. While we have been able to observe the time evolution
of MIPS under random pinning, exactly what causes the spatial dis-
tribution of the MIPS phases and how this is encoded in the random
pins seems to be a challenging problem for the future.

2. Density fluctuations as a function of Pe
So far, we have seen examples of how these systems phase sepa-

rate at Pe ≈ 100; now, we will look at how the local density fluctuates
in these systems for different values of Pe. The probability density of
the Voronoi volumes for each system is shown in Fig. 7 for various
values of Pe. In the absence of activity, i.e., Pe = 0, all systems feature
an approximate Gaussian distribution. Common to all the environ-
ments, there is the fact that the addition of activity produces a shift in
the peak toward smaller volumes and a broadening of the tail of the
distribution toward larger volumes. In the bulk system (Fig. 7, bulk),
the distributions feature a non-monotonic trend in the spread, first
increasing as a function of Pe up to a maximum at Pe = 60, before
decreasing. This is the first sign of re-entrant MIPS mixing, which
will be the focus of Sec. III D.

For the gel network (Fig. 7, gel) and the random pins (Fig. 7,
random), this broadening is monotonic, with the gel network cov-
ering a wider range of volumes. However, for the random pins and
the bulk systems, we observe the emergence of twin-peaked distribu-
tions at higher activity as a result of phase separation. For both the
gel and the random pins, the influence of the complex environment
leads to a splitting of the active particles into more than one popu-
lation, with a proportion of active particles aggregating or becoming
localized because of interactions with the environment.

The persistent motion of active particles induces symmetry
breaking that causes them to aggregate at surfaces and walls. In these
systems, the surfaces could be the edge of a MIPS dense phase, the
surface of the gel network, or a dense cluster of pins. These surfaces
collect active particles. To determine how the environment structure
affects the collection of particles at surfaces, we count the number of
particles located in locally dense regions ND, defined for particles
where Vvoro < 0.8. In Fig. 8, we plot the fraction of localized particles
ND/N as a function of Pe.

FIG. 8. Fraction of locally dense particles ND/N. Particles are considered locally
dense if Vvoro < 0.8.

3. Active transport in complex environments
We have seen so far that with a progressive increase in Pe, all

three systems undergo dramatic changes in terms of local density.
We have also seen that at high Pe, the average single-particle dis-
placements reveal information concerning the interaction the active
particles have with their environments. Similar to the Voronoi vol-
umes, we plot the probability densities of active particles in the
three systems for various values of Pe [Fig. 9(a)]. At first glance, it
is clear that for all systems, the particles complete larger displace-
ments as Pe is increased. Moreover, these distributions are highly
featured and reveal a great deal of information about the behavior
and interactions of the active particles.

In the bulk system [Fig. 9(a), bulk], the Δr distribution is a sin-
gle peak at Pe = 0. As Pe increases, this distribution shifts to higher
displacements and we observe the growth of a second peak, indicat-
ing the presence of MIPS in the system. With a further increase in
Pe, there is a continuous transition between the relative heights of
the peaks as the fraction of particles in the dense phase grows. This
is corroborated by the growth of regions of locally dense particles
over this range of Pe observed previously in Fig. 8.

The displacements for the gel network and the random pinned
system are plotted in Fig. 9(a)(gel and random), respectively. The
distributions of both of these systems show the splitting of a sin-
gle population into two or more populations with the progressive
increase in Pe. The first of these is the emergent peak at very small
displacements Δr/σ ∼ 10−1. These particles move only a small frac-
tion of their diameter and have become localized as a result of the
interplay between their activity and the environment.

Interestingly, both systems in complex environments
[Fig. 9(a)(gel/random)] feature a strong peak at Δr/σ = 1, with
some smaller features at subsequent integer displacements. An
examination of the average displacements in Fig. 5 shows that
they are located along the surfaces of the gel network and in small
pockets of lower density in the dense phase of the pinning system.
The location of these displacements makes it clear that they are a
result of particle re-arrangements at the obstacle interface and in
dense particle clusters. For the gel network [Fig. 9(a), gel] at Pe > 0,
the remaining particles are in a single large population, moving
comparable distances to particles in the bulk system. However,
in the case of the random pinned system [Fig. 9(a), random], at
Pe ≥ 40, there is a splitting of larger displacements across two
lengthscales, one at the interface and the other in the active gas.

Thus far, we have primarily considered two observables Vvoro

and Δr, both of which tell part of the story. These two observables
can be correlated to complete this picture, and the result of this
is plotted in Fig. 9(b). The result is a series of contours stacked
logarithmically, each layer denotes the level at which a percentage
of the data lies below. These plots provide some insight into the
population-splitting phenomena we have seen so far. We see that the
combination of confinement and activity creates a subpopulation of
particles that are arrested and have very little free space, a feature not
found in the bulk system. Interestingly, this arrested group is rela-
tively larger in the random pinning system. For the systems at high
Pe values in Fig. 9(b), the particles that have Vvoro < 0.8 and that in
some form belong to dense clusters; these particles still cover a wide
range of displacements. This is likely a combination of two phenom-
ena: first is that of the particles that have been localized over a longer
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FIG. 9. (a) Probability density of the
Voronoi volumes (Vvoro) for the bulk,
porous network, and random pinning
systems, respectively. All systems are
at ρ = 0.87, and various values of Pe
are considered (see the figure legend).
(b) Correlation of the Voronoi volumes
and the single-particle displacements of
the motile particles in the gel network,
random pins, and the bulk system. All
systems are at a density of ρ = 0.87
and plotted for Pe = 0, 20, and 120.
Black lines contain 90% of the data. Col-
ors show contour levels below which the
indicated percentage of the data will lie
beneath.

time frame. These are particles that are not moving and have very
little free space. The other case is that of particles that have been
mobile but have very little space. These will be particles that have
moved from a position at a previous time and are now located in a
dense cluster or at the object interface.

C. Local structure
So far, we have focused mainly on one-body structural proper-

ties via the Voronoi volumes. When studying amorphous systems,
it is instructive to consider higher-order structural correlations as
a precise means to probe smaller changes in the local structure. To
this end, we use the topological cluster classification (TCC).68 The

TCC identifies local environments whose bond topology is identi-
cal to that of small minimum energy clusters of a suitable reference
system, here is Lennard-Jones model. Some of us have shown that
this is appropriate for passive WCA particles66 and also have inves-
tigated the effect of activity on a similar (bulk) system.45,67 Here,
we consider clusters of differing sizes (5–13 particles) as indicated
in Fig. 10. The number of particles in each of these clusters Nc,
scaled by N, is then plotted as a function of Pe for ρ = 0.87. We
further consider the influence of the local environment where Nc

is the number of particles participating in a particular cluster. To
identify the cluster population, we need the bond network, which
we identify with a modified Voronoi decomposition (specifically,

FIG. 10. Higher-order structural analysis using the topological cluster classification. Here, particles in specific local environments corresponding to clusters of 5–13 particles
and the hexagonal close-packed and face-centered cubic crystals are considered. The number of particles in each environment Nc is then plotted as a function of Pe for the
three geometries under consideration: bulk, gel, and random systems at ρ = 0.87. The colors of the lines and data points correspond to the clusters depicted in the legend.
The colors of the particles in the renderings in the key correspond to the geometric properties of the clusters. In particular, the gray particles are in 3-, 4-, or 5-membered
rings and the yellow particles correspond to the so-called “spindles.”68
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FIG. 11. (a) Probability density of the Voronoi volumes in the bulk system at various values of Pe. As Pe increases, the distributions show first one, then two populations,
and then a re-entrant single phase at high Pe values. (b) The correlation of Vvoro and Δr in the bulk system at Pe = 160 shows a single population. (c) Variance of the
distribution of Voronoi volumes in the porous network (σ2

voro), random pinning, and the bulk systems as a function of Pe, all at density ρ = 0.87.

we set the Voronoi parameter of Ref. 68 to fc = 0.82). Now, we
are interested in the active particles, but in order to identify the
clusters, we include the immobilized particles in the bond network.
Then, we run the TCC, but when analyzing data, we only consider
active particles.

Figure 10 shows a common trend between the bulk, gel, and
random environments: the equilibrium local structure population is
disrupted by increasing Pe. Both of the confined environments show
cluster populations that are lower compared to the bulk case. The
random environment, where the position of the obstacles is taken
from equilibrium configurations, at Pe = 0 has the same population
numbers as the bulk case, but as soon as the activity is switched on,
all cluster populations fall more abruptly compared to the bulk case.
The first rapid decrease in the local structure at Pe ≃ 30 coincides
with the formation of MIPS. Unlike the gel and random pinning
systems, the bulk case experiences another large drop in the local
structure population for Pe ≃ 140. As we will see in Sec. III D,
this drop corresponds to a re-entrant mixing. Local structures are
present in the lower population in active systems than in similar
equilibrium systems as has been seen previously.67 However, it is
possible that phase separation or the influence of the environment
could influence this.

D. Motility-induced mixing
In addition to the phase behavior discussed thus far, for our

purposes, there is one more regime to be considered. At very high
Pe values, ABPs will transition from a demixed state due to motility-
induced phase separation to a mixed state, i.e., a homogeneous active
fluid. A similar behavior has been observed previously in Refs. 43
and 69 in bulk systems. We confirm these observations in the bulk
case. The presence of the transition is apparent in the probability
density of Vvoro in the bulk system [Fig. 11(a)]. These distribu-
tions show two populations at intermediate Pe values but a single
population at Pe = 0 and at Pe > 120. Looking at the correlation of
Vvoro with Δr confirms the single re-entrant phase at high Pe values
[Fig. 11(b)].

To study the re-entrant MIPS behavior in systems with the
quenched disorder in Fig. 11(c), we plot the variance of the prob-
ability density of Vvoro as a function of Pe: non-monotonic behavior
in this quantity signals a re-entrant phase. Looking at these data we
can see that for the bulk and random systems, as Pe increases, the
variance also increases up to a maximum, beyond which it decays to
an intermediate value. The peak corresponds to the state where there
is a roughly equal fraction of particles in the dilute and dense phases
ND/N ≈ 1/2. We plot the same for the systems with confinement
in Fig. 11(c). Notably, the random pinning system also undergoes a
transition to the re-entrant fluid. However, this transition is delayed
relative to the bulk, indicating that the presence of the pins works
to stabilize MIPS at high Pe values. For the gel system, we do not
observe the re-entrant behavior within the considered range of Pe.

IV. CONCLUSION
Suspensions of active Brownian particles show a rich range of

dynamical behavior, and our goal was to explore the influence of
complex confinement at high densities. To do this, we prepared con-
fining geometries with different static properties: randomly pinned
particles from an equilibrium bulk configuration and from a porous
gel structure. Both confining geometries are constructed to have the
same free volume available to the mobile particles, thus allowing
a direct comparison of the effects of the static lengthscale of the
confinement on the behavior of active particles.

We first explored the phase behavior at low Pe values, reveal-
ing how pinning suppressed the crystallization of the fluid at high
densities. The relaxation time of the particles is slowed down by the
obstacles (more for the random case compared to the gel case), and
also, it becomes more dynamically heterogeneous, as confirmed by
the study of the overlap function and four-point susceptibility.

At intermediate Pe values, the bulk system displays MIPS,
where the systems form domains of dense/slow regions and low den-
sity/fast regions that nucleate and grow in a similar manner to the
equilibrium phase separation of two disordered phases. Surprisingly,
we find that the obstacles not only do not suppress MIPS forma-
tion but actually act to stabilize it. Random obstacles display a very
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similar phase-separation pattern as the bulk case, but the domains do
not appear homogeneously in the system but are always formed from
the same regions of the sample. The mechanism of MIPS nucleation
from random obstacles is still unknown and should be addressed in
future studies. In particular, the effect of system size and changing
the state point would be most important to explore. The system size
that we have studied here fully demixes to two distinct phases, but
the timescale for this for different system sizes and, indeed, whether
larger systems fully demix would benefit from a detailed finite size
analysis. Furthermore, exactly how the pinned particle environment
encodes the spatial distribution of the MIPS patterns remains an
outstanding challenge. In the case of the gel, the MIPS domains
change completely and form a complex structure where the active
and inactive regions occupy different pores of the structure.

Finally, we considered how the local structure is perturbed
by the activity and revealed that the re-entrant MIPS behavior is
suppressed (or moved to higher Pe values) by the random envi-
ronments. In particular, the gel environment seems to be the most
effective in stabilizing the density and activity fluctuations. In this
case, we attributed this behavior to the absorption at the rough walls,
where the persistent motion of active particles creates localized and
highly dense regions, which, in turn, frees space inside the pores that
increase the particle transport in the system.

We believe that these results could be important for bet-
ter understanding the transport in biological environments and
for guiding future studies of active matter particles in random
media. The confining environments that we consider are experi-
mentally realizable,49 and indeed, combining this with some means
to break the symmetry in the future might enable investigations of
topotaxis.41 Other possibilities include the possibility to explore the
interplay of the complex environments such as those we have inves-
tigated and state functions, such as pressure,46–48 which also might
be measured experimentally in colloidal systems.70

SUPPLEMENTARY MATERIAL

See the supplementary material, Movie 1: This movie corre-
sponds to the stills in Fig. 6. The state point is ρ = 0.87 and Pe = 100
for the random pinning system. The movie shows the emergence of
dense and dilute regions.
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APPENDIX: OVERLAP

The overlap function Q(t) compares a particle configuration
with itself at a later time. An important feature of this measure of
similarity is that it is not particle specific; it matters not whether it is
the same particle occupying that space, only that there is a particle
there. With this in mind, it is clear why the bulk system [Fig. 12(a)]

FIG. 12. The overlap Q(t) is shown for
the particles in the bulk, gel, and random
systems at ρ = 0.87 for various values of
Pe (see the legend).
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behaves as it does. In this system, there are no fixed obstacles, and
thus, there are no points at which a cluster of particles could be
anchored. Therefore, even in a system with MIPS present, the center
of mass of a dense cluster remains diffusive and, thus, Q(t) decays
to a small value. Q(t) does not decay to 0 in this case in the bulk due
to the relatively high density, as there will always be some degree of
overlap.

For active particles in the other two systems, there is clear evi-
dence of the interplay between the self-propulsion and the complex
environment. Both systems converge to an overlap value, higher
than that of the bulk system. This is a product of the fixed geometry
of the obstacles. Although the obstacle particles are not considered,
there will be regions in the structure that will be more likely to
trap active particles, and even though particles are mobile, there is
a high probability that there will be some particles in these regions.
Interestingly, the gel and the random pins approach their con-
vergent overlaps from different directions as Pe increases. For the
gel system [Fig. 12(b)], the overlap value Q(t) increases with Pe
at longer times while decreasing with an increased rate at shorter
times. The increased rate on short timescales is explained by the
increased propulsion velocity promoting a quicker re-configuration
of the active particle populations. However, this increase in Pe has
the added effect of increasing the likelihood of a particle becoming
trapped against the walls of the gel network and this is supported by
the increase in the localized fraction N loc/N with Pe in Fig. 8.

As in the bulk and the gel network, the overlap of the random
system also decays at an increasing rate as Pe increases at short times
[Fig. 12(c)]. In the absence of activity, the random system particles
have a very slow decay in Q(t). This is a result of the pinned par-
ticles dramatically slowing down the dynamics of passive particles,
and this is also seen in the alpha-relaxation time in Fig. 2, where τα
was measured to be of the order 104 larger than that of the bulk or
gel systems. Unlike in the gel system, Q(t) for the random pinning
approaches its convergent value from above. This is likely due to the
arrangement of the obstacles in the random pinning system, since
the pinned particles are dispersed through the entire space and the
active particles have a higher chance of becoming trapped. The ran-
dom system converges to have a higher overlap value than the gel,
and this is due to the larger fraction of particles becoming localized
in the random system compared to the gel at the same activity and
density.
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