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Necking and failure of a particulate gel strand:
signatures of yielding on different length scales†

Kristian Thijssen, ab Tanniemola B. Liverpool, c C. Patrick Royall def and
Robert L. Jack *bg

‘‘Sticky’’ spheres with a short-ranged attraction are a basic model of a wide range of materials from the atomic

to the granular length scale. Among the complex phenomena exhibited by sticky spheres is the formation of

far-from-equilibrium dynamically arrested networks which comprise ‘‘strands’’ of densely packed particles. The

aging and failure of such gels under load is a remarkably challenging problem, given the simplicity of the

model, as it involves multiple length- and time-scales, making a single approach ineffective. Here we tackle this

challenge by addressing the failure of a single strand with a combination of methods. We study the mechanical

response of a single strand of a model gel-former to deformation, both numerically and analytically. Under

elongation, the strand breaks by a necking instability. We analyse this behaviour at three different length scales:

a rheological continuum model of the whole strand; a microscopic analysis of the particle structure and

dynamics; and the local stress tensor. Combining these different approaches gives a coherent picture of the

necking and failure. The strand has an amorphous local structure and has large residual stresses from its

initialisation. We find that neck formation is associated with increased plastic flow, a reduction in the stability of

the local structure, and a reduction in the residual stresses; this indicates that the system loses its solid

character and starts to behave more like a viscous fluid. These results will inform the development of more

detailed models that incorporate the heterogeneous network structure of particulate gels.

1 Introduction

Even well-understood basic models can sometimes give rise to
strikingly complex phenomena. Among these are so-called ‘‘sticky
spheres’’, which are hard spheres with a short-ranged attraction.
They represent arguably the smallest increase in complexity from
hard spheres, the simplest non-trivial model of atomic and
colloidal systems.1 Although their equilibrium phase behavior
has been, to a considerable extent, understood since the 1960s,2

out of equilibrium, sticky spheres exhibit a bewildering range of
phenomena, including multiple glassy states3 and gelation, which
is a complex blend of phase separation and dynamical arrest
leading to a far-from-equilibrium unstable state.4

Such gelation caused by arrested phase separation can occur
in a wide range of materials across a wide range of length scales,
from phase-demixing oxides5 and metallic glassformers,6 small
molecules,7 clays,8 and granular matter.9 Among the most well-
known gel-forming systems are soft materials, including
proteins,10 foods,11 hydrogels,12 tissues13 and perhaps most
studied of all, colloids.4,14

Gels typically consist of heterogeneous networks of con-
nected ‘‘strands’’,15 which are dynamically arrested. They exhi-
bit complex phenomena that continue to resist scientific
understanding, including complex aging behavior, and the
possibility of self-induced catastrophic failure after an extended
and unpredictable waiting time.4,14 During the waiting time, the
gels actually become stronger before undergoing catastrophic
failure.16 Given the simple nature of the constituents, and the
long-understood equilibrium behavior, the non-complexity of
the non-equilibrium behavior is quite remarkable.

From empirical observation14,15,17–23 we know that the main
control parameters for gels of sticky spheres are the strength of
attractive interactions between particles, and the particle
volume fraction. These parameters influence the mechanical
properties of the gel, including its elastic response to small
mechanical perturbations. When larger forces are applied, the
strands of the gel network break, leading to macroscopic
flow.4,17,24–31 An important deformation mode in this process
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is stretching and eventual breakage of strands under tensile
loading, leading to a stress reorganization of the surrounding
gel, and hence to flow.32 (This is different from polymer gels,
where entanglements dominate the rheology.) An important
signature of the non-equilibrium gel state is that its properties
– such as elastic moduli and yield stress – depend on its history,
including its age.16,19,24,33–36

A fundamental open question concerns the mechanical
failure of particulate gels: how can the microscopic interactions
between the particles be used to control the macroscopic failure
mechanism? This question is challenging because mechanical
failure is sensitive to physical processes on several length
scales,37 from individual particle diameters,38 to the strand
thickness, up to the size of a macroscopic gel.19,23,39–41 There is
a corresponding range of time scales:27,42 in large gel samples,
there may be a long period of aging, after which the gel quickly
collapses.16 This situation makes gels difficult to study. Computer
simulations can follow the motion of the particles, but the
computational cost of simulating the long aging period is prohi-
bitive, especially given the large (macroscopic) system sizes that are
required. Experiments suffer from similar problems: techniques
for monitoring a macroscopic sample do not allow individual
particles’ motion to be resolved, while particle-resolved techniques
are limited to moderate time scales and cannot simultaneously
resolve the behaviour throughout a macroscopic sample. For
theoretical analysis, continuum modeling approaches are avail-
able, but these do not resolve behaviour of individual particles,
relying instead on constitutive models. Nor do they treat the
heterogenous nature of the material fully.

This situation calls for an approach on multiple scales, in
order to combine the useful aspects of different methods. In this
work, we address the fundamental events which are expected to
lead to gel failure. We focus on the breakage of an individual
strand, as a fundamental process that feeds into macroscopic
yielding,26,39 and into aging (or coarsening) of gels.43 Like many
processes in material failure, this yielding is challenging to
predict and control, even with state-of-the-art theories. For exam-
ple, the thickness of the strand ranges from 1 to 10 colloidal
diameters, so single-particle fluctuations can have significant
impact on the whole strand: this limits the predictive power of
continuum models. Also, the strength of attractive interactions is
only a few times the thermal energy, so there are frequent
fluctuations in which interparticle bonds are broken and
re-formed, necessitating a statistical mechanical approach. In
addition, the strand is itself an amorphous material, so subtle
features of the particle-level structure can have significant effects
on its large-scale behavior,34 as is familiar in glassy materials.

In response to these challenges, we analyse the failure of a
single strand, under elongation. We performed computer simu-
lations of this process, analysing the results using three complemen-
tary methods. These are a simple continuum modelling approach
based on previous established models;44–46 a new characterisation at
the single-particle level; and measurements of the local stress.47

These analyses lead to a coherent and unified view of the failure
process over different length scales. Failure occurs by a necking
mechanism, which proceeds via a feedback mechanism, leading to a

linear instability. Such instabilities may generally occur in several
different ways:44–46 Our results confirm that the tensile force in the
strand generates an increased stress in the neck, resulting in
increased plastic flow there, which causes further thinning. This
increases the local stress even more, and so on, until the strand
breaks. In simple terms, one may imagine that the macroscopic
stress s exceeds the yield stress sY in the neck,28,38 while remaining
below sY elsewhere. Plastic flow in the neck is revealed by local
measurements of increased particle motion, and this is coupled with
a reduction in the number of low-energy (stable) structures.

We refine this established picture in two ways. First, a top-
down continuum modelling approach46 indicates the existence of
an internal time-dependent plasticity field that determines the
response to local stress. Second, particle-level measurements of
the local stress47 reveal a complex pattern of residual stresses48–50

that come from the initialisation of the strand;51 this pattern
changes significantly in the neck, as it develops. This is reminis-
cent of other amorphous systems where mechanical heteroge-
neous properties can determine plasticity.28,31,35,52,53 These
results bridge the scales between continuum modelling (rheol-
ogy) and the particle level (local motion and local structure),
allowing new relationships to be revealed. The connections are
mediated by our direct measurements of local stress.

By combining these analyses on different scales, our results
greatly extend previous work on single gel strands41,54 and on
breakage of glassy (amorphous) samples,46,55 and other soft
materials.56 Some other approaches to gel modelling57,58 consider
the gel as a continuum, without resolving individual strands – our
approach can connect such models with the microscopic gel
structure. Similarly, our detailed analysis of individual strands
complements alternative simulation approaches where particle
interactions are justified by a top-down approach:23,32 these
models do not resolve the microscopic structure of the strands,
but they do enable simulations of an entire gel sample. The
depletion attraction in these gels is a few times larger than the
thermal energy kBT. This leads to gels with thick strands, in which
significant plastic deformation occurs before breakage.59 This is
different from dilute gels with thin strands, where there can be
visco-elastic behaviour in the overall gel, but individual strands
have a sudden brittle failure.23

Overall, our results elucidate the microscopic mechanisms for
strand failure. They include the discovery of new relationships
between emergent properties (like yielding) and local (micro-
scopic) structure, showing how to bridge the gaps between
microscopic and macroscopic mechanical interactions in
arrested out-of-equilibrium systems. An understanding of these
relationships, which can serve as a foundation for the coarse-
grained modelling of macroscopic gels, is vital for the design and
control of gels, as an important class of soft materials.

2 Results
2.1 Overview

We briefly describe our model system, with full details in
Section 4. We simulate a gel-forming system60,61 of particles
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with short-ranged attractive interactions, and two different
particle sizes, to suppress crystallisation.61 Particle i has posi-
tion ri and velocity vi = :ri, it evolves by Langevin dynamics in a
simulation box with periodic boundaries:

m _vi ¼ �riV � l0vi þ Fsolv; (1)

where m is the particle mass, V is the interaction energy, l0 is a
friction constant (proportional to the solvent viscosity), and
Fsolv the random solvent force, whose variance is proportional
to the ambient temperature, see Section 4.1 for further details.
The mean particle diameter is denoted by l.

This system forms gels by arrested spinodal decomposition.61

A snapshot of one such gel is shown in Fig. 1(a), showing a
network of strands that evolves in time. In this work, we initialise
our system to mimic a single strand of such a gel, by quenching a
bulk colloidal liquid to form an amorphous (glassy) solid, and
excising a cylindrical sample, see Fig. 1(b). The strand has initial
length L8 = 30l and we vary its initial radius r0 to mimic strands of
different thicknesses. An important time scale is the Brownian
time tb (see Section 4.1), which is the typical time required for an
individual particle to diffuse its own radius. Before excising a
strand we allow the high-density mixture to equilibriate (for
104tb) before excising it. We then also allowed the surface of
the excited strand to relax for 103tb before we started to deform
the simulation box. We varied this equilibration time up to 105tb

and only found a weak dependence on the age of the gel (see
Section 4.2). If this aging time was comparable with the relaxa-
tion time of the high-density mixture, the nature of the failure
might be different, but we do not consider this regime here.

We deform the strand by affine elongation of the simulation
box, so the length L8(t) increases with time t. This stretches the
strand, which eventually breaks. Fig. 1(b and c) illustrates the
resulting behavior, which is governed by four dimensionless
parameters (see Methods 4.1): the attraction strength E between
the particles a rescaled elongation rate _g, the strand thickness r0/
l, and a solvent damping parameter l. Gelation is associated with
metastable gas–liquid phase separation,14 whose critical point is
at E� � 2:8.62 The data of Fig. 1 have E ¼ 4:5, corresponding to
E E= � � 1:6, well inside the regime of gelation. We fix l = 10
throughout, consistent with a gel in a high-friction solvent
environment. For particulate gels that form in the absence of any
solvent,7 one would consider instead the limit of small damping;
we would expect similar results in this case too. For the other
parameters, we mostly focus on the representative values used in
Fig. 1(b–e). The qualitative picture is robust to changing these
parameters, this will be discussed below.

Fig. 1(c) illustrates the neck that forms as the strand is
stretched. It becomes increasingly thin and eventually pinches
off, so the strand breaks. This behaviour is illustrated in Movies
S1–S3 (ESI†). To focus on this effect, we divide the simulation
box into 20 segments along the z-direction, indexed by their
rescaled positions Z = z/L8(t). We count the number of particles
in each segment, and write Nm for the smallest such number,
which serves as a proxy for the thickness of the neck. Fig. 1(d)
shows Nm, as the strand is elongated. To illustrate the varia-
bility in the failure mechanism, we show results for 8 repre-
sentative simulation runs, all from the same initial structure,
with different random forces, (such isoconfigurational ensem-
bles have been used before in studies of glassy materials63). We

Fig. 1 (a) A 2D slice of the interior of a 3D gel simulation, showing part of the simulation box containing a thick strand (red) and a strand in the process of
breaking (turquoise). (b) A gel strand after initialization (g = 0) with uniform thickness, red arrows show the direction of elongation. Parameters: E ¼ 4:5,
r0 = 4l and _g = 5� 10�6. (c) The same strand at strain g = 0.4, showing formation of a neck. (d) and (e) The number of particles in the thinnest region of the
strand Nm and the tensile force in the strand Fz, as a function of strain g. Thin lines show 8 runs from the same starting conditions (thin blue lines). Thick
lines are an average over 100 runs. (f) The cross-sectional stress �szz, averaged over z, for different varying strain rates _g. (Shaded regions indicate the
standard deviation over 6 separate runs.) The dashed lines in (e) and (f) are homogeneous solutions of the continuum theory (eqn (3) and (4)), which are
valid for times before significant necking has occurred (see main text). (g) Distribution of the position of the neck, for 100 runs with identical initial
conditions. Dashed line indicates the thinnest segment at g = 0.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
Se

pt
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 1

1/
23

/2
02

3 
12

:4
7:

54
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm00681f


This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 7412–7428 |  7415

also show the average of Nm, obtained over 100 such runs. The
formation of the neck is clear, as is the gradual reduction in its
thickness, leading to failure. This corresponds to a ductile
failure mechanism: all the amorphous strands considered here
break in this way, we do not see any signs of brittle behaviour.

We measure the stress in the strand by the method of Irving
and Kirkwood (IK).47,64–67 The resulting stress estimates are
noisy, due to rapid thermal fluctuations, so all such measure-
ments are averaged over a time period of 250tb, to reduce the
statistical uncertainty. The effects of this averaging are dis-
cussed in Appendix A.3. Throughout this work, all stresses (and
elastic moduli) are quoted in units of kBT/l3.

The strand is under tension and the corresponding tensile
force is easily obtained from the total (global) stress: its average
is shown in Fig. 1(e), together with several representative
trajectories. There are three clear regimes, as the strand is
elongated. Initially, the response is elastic and the stress
increases. This is followed by a short plateau – a signature of
plastic flow – before the stress smoothly decreases, until break-
age occurs. This decrease mirrors the reduction in the neck
thickness [Fig. 1(d)]. Physically, the force required to maintain a
constant strain rate decreases as the neck gets thinner. How-
ever, there is no sudden drop in stress, as would be expected for
brittle failure. In all measured cases, the neck gets gradually
thinner, until the entire tensile force has to be sustained by a
cross-section containing only 1–2 particles. At this point the
tension is very small, and the strand ruptures.

While mechanical stability requires that the tensile force Fz

is constant along the arm, the IK method also provides a local
measurement of the stress tensor s(r), which reveals additional
information about the elongation process. To make contact
with continuum models of rheology,44–46 we consider the zz
component of the stress, averaged over the cross-section of the
strand (numerical estimation of this quantity is discussed in
Section 4). The resulting quantity is denoted by �szz(Z), it is
related to the force as �szz(Z) E Fz/A(Z) where A(Z) is the cross-
sectional area. After averaging the stress over Z, we plot the
result in Fig. 1(f), for several different values of the elongation
rate _g. These results are compared with a simple rheological
model (dashed lines), see below for details.

Recall that we performed multiple simulation runs from the
same initial configuration. For this initial condition, Fig. 1(g)
shows that the neck is more likely to occur in particular
locations. In the simplest theories of this instability, the neck
should always form at the thinnest point on the strand. This is
not consistent with the data, which is a first indication that the
internal structure of the arm is playing a role in the rheology, as
predicted by more advanced theories.45,46

Before analysing these effects in more detail, we identify a
surprising aspect of neck formation: Fig. 2 shows that the
particles in the neck just before breakage (coloured blue) have
arrived in the neck region from a range of other locations in the
strand. See also Movie S1 (ESI†). This demonstrates significant
mobility of particles, especially for those near the surface of
the strand, and for those in the neck (see also Fig. 6 and
Section 4.5, below).

2.2 Continuum-scale description

We develop a simple description of the necking process at the
continuum level. On this scale, two distinct types of necking
instability in amorphous cylindrical strands have been identi-
fied:44–46 gradual plastic deformation or sudden failure. The
behaviour found in our system corresponds to the plastic
(gradual) case. (The sudden mechanism – not seen here – is
driven by the build up of elastic stress).

Recall that Z = z/L8(t) is a rescaled co-ordinate along the
strand. Modeling this strand as a thin filament, the theory44–46

is based on four Z-dependent quantities: the filament’s cross-
sectional area a(Z); the local strain rate _gL(Z); a scalar field W(Z)
that coincides (in this case) with the stress �szz(Z); and an
internal field w(Z) that controls the plastic flow rate (see below).
The necking instability can be captured by the following toy
model. We follow the model proposed in the literature,46 but
with the simplification that stress can be captures with a scalar
field45 and a simplified internal field relaxation.

The elongation rate is slow enough that advective effects are
negligible during elongation, and local force balance holds at
all times. Then conservation of mass requires qta = ( _g � _gL)a,
and the force balance condition is div s = 0 (see Appendix C).
For the filament, this means that

@

@Z
ðaWÞ ¼ 0: (2)

We identify aW as the tensile force in the strand, which is
constant along its length.

Our equation of motion for W assumes that stress increases
due to elastic loading and relaxes by plastic flow:

@W

@t
¼ G _g� pðW ; wÞ½ �; (3)

where G is the elastic modulus and p is the rate of plastic
relaxation,46 which depends on the stress and the plasticity w.
We assume that plastic flow only takes place above the yield
stress sY, taking p(W,w) = tp(w)�1[(W/sY) � 1]y(W � sY) where tp

is a plastic time scale and y is the Heaviside (step) function.
Following ref. 46, the plasticity w is analogous to a local
temperature that determines the probability of an activated
rearrangement, inspired by the theory of shear transformation

Fig. 2 Snapshots of the strand from a single trajectory, as the neck forms.
(a) Strain g = 0.06, (b) g = 0.20, (c) g = 0.36. The 16 particles that form the
neck in (c) are coloured in blue, to show their movement.
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zones.68 Hence, tp(w) = tref exp(1/w) where tref is a reference
time scale.

The general approach of ref. 44 and 45 starts with homo-
geneous solutions to the equations of motion (that is, a, _gL, W, w
independent of Z). Necking is a linear instability of this solution.
For the homogeneous solution, we first assume that the field w is
a simple constant, independent of both t and Z. One finds W(t) =
G_gt + W(0) for short times (such that W o sY) while for long times
W(t) = sY/(1� _gtp). This theory was used to fit the data of Fig. 1(e),
in the early-time regime before the neck forms, and is only valid
for small strains where we can assume the homogeneous
solution of the hydrodynamic equations. However, the data for
faster elongation rates in Fig. 1(f) shows a stress overshoot, which
cannot be described at this level of theory.

To account for this effect, we allow the plasticity field w to
depend on time with a relaxational dynamics that is controlled
by the plastic relaxation itself:46

@w
@t
¼WðtÞ

sY
pðW ; wÞ w1 � wðtÞ½ �: (4)

The additional parameter wN fixes the steady-state value of w.
This model (with time-dependent w) was used to fit the stress in
Fig. 1f: there is good agreement, given the simplicity of the
model. (As noted above, it is essential that w is time-dependent,
otherwise the model cannot capture the stress overshoot at the
largest strain rate).

This model supports two main regimes. For very slow elonga-
tion with _gtp { 1, the field w is constant until W reaches the yield
stress, at which point w relaxes quickly to wN. The slowest
elongation rate in Fig. 1(f) is consistent with this regime, fitting
gives sY E 3.3 (recall the units are kBT/l3). For faster elongation
rates, the relaxation of w competes with the elongation rate, this is
responsible for the stress overshoot in Fig. 1(f). Fitting simulta-
neously to all the curves in Fig. 1(f), we estimate G = 420, wN = 80
and tref = 180tb, as well as the initial condition w(t = 0) = 0.65, see
Appendix C for further details. We note that the essential physical
features that are required to fit the data are the existence of a
yield stress that depends weakly on _g (which ensures a stress
plateau as seen in Fig. 1(f)), and a non-trivial time dependence of
w (which accounts for changes in structure on elongation and
allows the model to capture the stress overshoot). The model
proposed here is just one way to capture these features, and there
are other models in the literature that capture similar features.45

More detailed atomistic simulations of amorphous solids have
been done in the past with success to get relevant parameters for
continuum models based on shear transformation zones.69,70 In
the present context, it is not obvious a priori that any kind of
continuum description is relevant for these very thin strands,
which are only a few particles in diameter. Hence we focus on a
simple illustrative model, which can capture the main features of
necking and failure.

Having characterised the homogeneous solutions for W, we
can now use this model to perform a linear stability analysis by
allowing Z-dependent perturbations, see Appendix C. The
results indicate that the system is always unstable once W rises
above sY, so necking should occur in all cases, as observed.

A simple physical picture of this instability is that since the
tensile force is constant along the strand [eqn (2)], the stress is
largest at its narrowest point: this will be the location where W first
exceeds sY, leading to plastic flow near this point, and hence to
further thinning. However the observation of Fig. 1(g) – that the
neck does not always form at the thinnest point – indicates that
heterogeneities in the internal structure of the strand also play a role
in the instability. These features enter the model as inhomogene-
ities in w, enabling the theory to explain the decoupling of the neck
position and the initial thickness. In addition to this role of internal
structure in determining the neck position, note that thermal
fluctuations are also relevant because they give rise to the non-
trivial distribution in Fig. 1(g). Such fluctuations are suppressed as E
increases and the system approaches the athermal limit.

2.3 Particle-level description

Having analysed the behaviour at the level of the entire strand
and found that they match well regardless of the large fluctua-
tions on these small scales, we turn to the microscopic (particle-
level) structure.

We begin with a comparison of dynamical quantities. We
define a correlation function CB(Z;g,Dg) that measures how much
particles’ local environments have relaxed in segment Z, for the
period between strain g and strain g + Dg (see Section 4.5).

Fig. 3(a and b) shows that particles in the neck region have
significantly faster relaxation than those in the bulk. This is
characterized in two ways: Fig. 3(a) fixes g at a value where the
neck has already formed, showing that CB decays faster for the
neck and slower for the bulk, as a function of Dg. On the other
hand, Fig. 3(b) fixes the strain lag Dg = 0.05 and varies g,
showing how the difference in relaxation rate grows, as g
increases and the neck develops. This is a microscopic signa-
ture of the prediction of the continuum theory, that plastic flow
events occur preferentially in the neck and is an indication the
local stress can be used as the varying internal field variable w
proposed in the continuum theory.

We also analyze the local structure of the strand using the
topological cluster classification (TCC).71 This provides a
detailed characterisation of local packing, by identifying specific
geometrical structures within the system. We write nn(Z;g) for
the average number of neighbouring particles around a particle,
at position Z and strain g. Similarly we write ntet for the average
number of fully-bonded tetrahedra in which a particle partici-
pates (the total number of structures divided by the number of
colloids in a Z-segment), and ntb and npb for numbers of
triangular and pentagonal bipyramids,72 normalised in the
same way. (These local packing motifs are illustrated in Fig. 3.)

Fig. 3(c–f) shows these quantities for both the neck and the
bulk, as g increases. The average number of neighbors nn and
the average number of tetrahedra ntet in which a particle
participates remain almost constant with g, until the system
starts to break around g = 0.36. (The large error estimates in this
region arise because breakage occurs at different values of g for
different runs.) Both these quantities follow the number of
neighbors, which means that the neck differs significantly from
the bulk only when the strand is close to breaking.
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However, we find different behavior for the average numbers of
triangular bipyramids ntb and pentagonal bipyramids npb in which
a particle participates. These measurements correspond to larger
structures of 5 and 7 particles respectively, which are sensitive to
details of the packing, and tend to be more common in amor-
phous materials that are deep in the energy landscape.73,74 Hence
ntb and npb are larger in materials that are well-annealed and
stable. The neck shows a deficit in these low-energy structures,
compared with the bulk (where the number is almost constant):
these differences appear as the neck begins to form (gE 0.1). This
effect can be understood in terms of the faster dynamics in the
neck, which tends to break up low-energy local structures, as
happens in sheared bulk samples.20,30,37,73–75 This occurs as

particles keep flowing away from the neck, and hence the blue
curves in Fig. 3(e and f) follow the neck thinning shown Fig. 1(d).

2.4 Local stress

In order to bridge scales between the particle-level and the
whole strand, we measure the local stress, which is the funda-
mental object for controlling rheology.

The stress �szz(Z) corresponds to the tensile force in the
strand divided by its cross-sectional area, at position Z. This
quantity was already discussed in Fig. 1(f), which shows its
behaviour after averaging over Z. The Z-dependence of this
quantity is shown in Fig. 4(a and b) and Movie S2 (ESI†): one
sees that the formation of the neck is accompanied by a local

Fig. 3 (a) Dynamical correlation function CB(g,Dg) on varying Dg, comparing the neck (Z = 0.5) and the bulk (Z = 1). The correlation function decays as the
particles move away from their neighbours. (b) Dynamical correlation on varying g at fixed lag Dg. Increasing separation of the curves indicates dynamical
contrast between the neck and the bulk. (c) The ensemble-averaged number of neighbours nn. (d)–(f) The ensemble-averaged number of tetrahedra ntet,
triangular bipyramids ntb and pentagonal bipyramids npb in which a particle participates. The legend in (a) is common to all panels. Data was averaged
over 10 trajectories, parameters are the same as shown in Fig. 1. Shaded regions indicate the standard deviation. The dotted line indicates the onset of
necking (the strain beyond which Nm has decreased significantly).

Fig. 4 (a) The Z-dependent stress �szz at initialization. (b) The stress at g = 0.4. All particles in a discretized Z-segment are coloured to the corresponding �szz. (c) The
number of particles in different segments of the strand, as the strain increases, for the single trajectory shown in (a) and (b). (d) The average stress profile �szz(Z) at the
neck (Z = 0.5) and in bulk (Z = 1) as a function of strain g. (Data averaged over 6 runs.) Colored area is the standard deviation of different runs. (e) and (f) The local
stress szz, for the same configurations shown in (a) and (b). (g) The anisotropic stress measurement %S(Z) as a function of strain g. (h) The stress distribution curves just
before breakage (g = 0.35–0.4) for the neck and the bulk, compared with the unstrained distribution. Measurement is done over a single run.
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increase in stress. This result was already anticipated in eqn (2):
the tension is constant along the strand, so the stress must be
larger in segments where the cross-sectional area is smaller.
Fig. 4(c) shows the development of the neck, and Fig. 4(d)
compares the stress in the neck with the stress in ‘‘the bulk’’
(far from the neck). The central observation is that the stress in
the neck reaches a plateau at the yield stress of the strand, so
plastic events continue to occur there, allowing the strand to
elongate. As the neck develops, the reduction in area at (almost)
constant stress explains the reduction in the tensile force
[Fig. 1(e)]. This decreasing force leads to a reduction in the
bulk stress, which falls below sY. Hence these measurements
show directly the mechanism by which plastic events concen-
trate in the neck.

A more detailed analysis of the stress reveals additional
complexity. Fig. 4(e) and (f) and Movie S3 (ESI†) show the zz
component of the local stress szz, averaged over small regions
of size (1.5l)3. Before elongation, one might have imagined that
the local stress in the strand [Fig. 4(e)] would be close to the
average behaviour [Fig. 4(a)]. Instead, szz has strong inhomo-
geneities: its average is positive (corresponding to tension), but
there are significant regions where szz o 0. These inhomogene-
ities are residual stresses, arising from the (non-equilibrium)
process of initialising the strand. We verified that the resulting
spatial structures are long-lived and tied to the amorphous
structure of the material (see Appendix A), they are not the
result of fast thermal fluctuations.

We also checked that the strands satisfy local force-balance
(div s = 0), the residual stresses are divergence-free and arise
from the inhomogeneous (amorphous) microstructure of the
strands. Since szz depends quite strongly on z, this requires that
the stress also has significant off-diagonal components. Such
residual stresses were not included in the simple rheological
models considered above, where the stress W depended only on
Z. However, bridging between rheological models and the local
motion of individual particles requires some analysis of these
stresses. For example, the plasticity w presumably depends
on the local structure of the strand and the residual stresses
there – this offers the opportunity for a deeper understanding
of the physical meaning of this field, if it could be connected to
particle-level observables.

To explore this, Fig. 4(f) shows the behavior as the strand is
elongated and the neck forms. An interesting feature is that the
local stress in the neck region appears more homogeneous,
compared to the bulk. To quantify this observation, we measure
the anisotropy of the stress tensor s: we define %S(Z) by averaging
the (square root of the) second stress invariant over a given
segment of the strand (see Section 4.4). This quantity tends to be
large when the stress has large fluctuations away from its average,
within a segment; it is smaller when the stress is homogeneous.
After averaging over many trajectories, Fig. 4(g) compares %S(Z) in
the neck with the bulk of the strand. It shows that the neck does
indeed have a more homogeneous stress field.

Also, Fig. 4(h) shows the distribution of szz, within the neck
and the bulk. One sees that the probability to see szz o 0 is
suppressed in the neck. In fact, it seems that the reduction in

this probability accounts for most of the increase in the average
�szz in the neck (the typical value of szz barely increases there). In
comparison with these results, we also simulated the elonga-
tion and rupture of crystalline strands (details are given in
Appendix B). In this case, the residual stresses are (mostly)
absent and there is no homogenization of the stress within the
neck [for example, %S(Z) does not decrease there].

Coupled with Fig. 3, these results show that plastic flow in
the neck is coupled with two distinct local changes: reduction
in low-energy (stable) structures, but also a homogenization of
the residual stresses [smaller S(Z)]. Physically, we can think of
this process as a partial fluidisation of the neck, where it loses its
amorphous-solid character and starts to move as a highly-viscous
fluid, under the applied stress. The solid is characterized by
stable local structure and large residual stresses; the fluid is more
disordered in its structure but more homogeneous in stress.
Similar behavior has been observed in metallic glasses in the
spreading of shear transformation zones.76,77 Overall, these
results illustrate the subtle interplay of structure, forces, and
dynamics, which is required to characterize the multi-scale
phenomenon of yielding and fracture in these amorphous
systems.

2.5 Robustness of results for different model parameters

The results presented so far focused on representative para-
meter values: attraction strength E ¼ 4:5, strain rate _g = 10�6

and strand thickness r0 = 4l. However, the general picture that
we present is robust. This is shown in Fig. 5 where we vary the
strain rate _g, the strand thickness r0, and the cohesive energy E.

Varying the strength of attractive forces [Fig. 5(a and b)],
there is weak dependence of the neck thickness Nm on E. The
tensile force in the strand is larger when the attractive forces
are stronger (as expected), but the qualitative behavior of the
stress remains the same. (This is also true for the local stress.)
We did find that for larger E, the position of the neck formation
was more predictable: the distribution analogous to Fig. 1(g)
was more sharply-peaked, data not shown. This may be
expected since thermal fluctuations become less relevant as
one approaches the athermal limit E!1.

The effect of varying elongation rate is shown in Fig. 5(c and
d). It is notable that the neck thickness Nm is almost unchanged
as _g varies over two orders of magnitude. For yet larger strain
rates, the thinning process of the neck is accelerated but the
qualitative picture remains the same. Fig. 1(f) already showed
that the stress during neck formation depends weakly on the
strain rate, although faster elongation does create a stress
overshoot. This picture is confirmed by Fig. 5(d) which shows
the corresponding tensile force (which is simulation box-size
independent as can be seen in the Appendix A.2). We also
performed simulations for even faster elongation: the picture of
a gradual (viscosity-driven) necking instability remains robust
and we did not observe any sudden (elasticity-driven) failure
mode,44,45,78 nor solid-like brittle failure. An interesting feature
of these systems is that higher elongation rates cause the strand
to break at lower total strain [Fig. 5(d)], in contrast to some
studies which used athermal systems.78,79 The reason is that for
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slow elongation rates, thermally-activated motion allows the
neck to be drawn out further before breakage. For faster
elongation, the rates of thermally-activated processes drop
below _g (an estimate of this is given in Section 4.5), the neck
is less fluid, and the strand breaks sooner.

Finally, varying the strand thickness r0 [Fig. 5(e and f)] one
sees a general trend that thicker strands fail at larger strains
(and support somewhat larger stresses), but the qualitative
behaviour is again the same.

3 Discussion

We have addressed some of the challenges posed by yielding of
gels of sticky spheres, by addressing the elementary unit of
failure, which is the breaking of a single strand of the gel
network. Such local events are important in gel rheology as they
trigger collective reorganization of the macroscopic network.32

We implemented a continuum description, and we also analyze
our simulations at a single-particle level using higher-order
structure, and also at a more coarse-grained level with the
stress tensor.

At the level of the whole strand, we find that failure occurs
by a necking instability, driven by plastic flow. This can be
captured by a simple continuum model, following.45,46 This
description of necking will be a useful basis for future models
of failure in these challenging heterogeneous materials.

At the microscopic level, we showed that particle dynamics
are faster in the neck, and that complex higher-order structures
associated with rigidity are significantly suppressed prior to
failure. Remarkably, the structural signature of higher-order
clusters, like triangular bipyramids ntb and pentagonal bipyr-
amids npb, appears to be stronger in this system than a previous
study of glasses under shear.74,75,80 As these structures are
associated with rigidity,74 this gives another indication that
the gel fluidizes significantly in the neck.

To bridge between these levels, we analysed the local stress:
this is a fundamental quantity for the rheology, which can also

be analysed at the microscopic level. Our results demonstrate
links between the local structure and the local stress: the
structural and dynamical changes in the neck are accompanied
by a reduction in the residual stresses, which makes the stress
field more homogeneous.

Our microscopic resolution of the stress provides mecha-
nistic insight, in that the stress �szz(Z) has a value that remains
close to the yield stress sY, as the neck develops [Fig. 4(d)]. The
constant tensile force in the strand means that other (thicker)
parts of the strand have �szz(Z) o sY, so that plastic events are
increasingly concentrated in the neck. This positive feedback
drives the (plastic) necking instability, and the mechanism is
consistent with the simple continuum model.

On the other hand, the simulations reveal large residual
stresses in the strand, which are not accounted for directly in
the continuum approach. These results reinforce the observa-
tion that the amorphous structure of the strand is heteroge-
neous, both in its local structure and in the stress field.
Consequences of this heterogeneity include Fig. 1(g), which
shows the place where the strand is most likely to break. This
issue – of predicting rupture – would seem to be vital for
predicting and controlling properties of gels. It is also notable
that particles have significant mobility within the strand as
plastic motion takes place, recall Fig. 2. Such issues are not
easily addressed by continuum modelling, their resolution will
require input from particle-level data. For example, a simple
von Mises criterion for yielding in soft solids81,82 predicts that a
sample will fail in places where the local stress is large and
anisotropic: the residual stresses mean that such locations do
exist in our samples, but we do not find them to be correlated
with the failure.

An alternative approach – building on the continuum the-
ories – would be to search for links between the continuum-
level plasticity field w and the stress anisotropy (or local
structure) at the microscopic level. It is certainly true that some
aspects of the microscopic structure should influence the
continuum models through such a field, as well as through
sample-to-sample variations in constitutive parameters such as

Fig. 5 Dependence on model parameters. (a), (c) and (e) show the average neck thickness and (b), (d) and (f) show the tensile force in the strand. In (a)
and (b) the attraction strength E is varied; in (c) and (d) it is the elongation rate _g; and in (e) and (f) it is the strand radius r0. All lines are averaged over 6 runs
with identical starting conditions for a given set of parameters. The blue lines correspond to baseline parameters: E ¼ 4:5, r0 = 4l and _g = 5 � 10�6.
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the yield stress and elastic modulus. These issues could be
usefully investigated in future work.

In addition to these questions about the failure of a single
strand, our results can also inform future studies of gel
behaviour. In particular, we imagine extending these measure-
ments to gel samples under shear,29 or to analyse the breakage
of strands during coarsening.43 In these cases, the gel will have
many strands, and its overall failure will depend on which ones
break first, and on how aging affects the tendency to failure. We
also note that the initialization procedure for our strands does
not capture the full process by which structures form in
realistic gels. Instead, our model strands provide a controlled
baseline for measuring behavior under elongation. It would be
interesting to investigate the similarities and differences
between realistic gels and these model strands, and to under-
stand in more detail the dependence of strands’ failure on their
history, including effects of aging.

Nevertheless, despite the differences between single strands
and macroscopic gel networks, the results here indicate that
the more fluid behaviour of the strand in the neck region might
be a useful early-warning signal of strand breakage. Such
signals would be helpful for characterising and predicting the
behaviour of gels as they undergo ageing and/or collapse.
An important extension of this work would be a detailed
comparison of our results with experiments, for example rheo-
logical studies83 and confocal microscopy observations.65

Finally, we note recent work where imaging has enabled forces
between colloids to be inferred, which could provide a direct
comparison of the stress field at the particle level.84

4 Methods
4.1 Simulation model and dimensionless parameters

We consider a bidisperse system of N colloidal particles, the
two species have diameters 1.04l and 0.96l, where l is the
average size. They interact by a Morse potential, which mimics
the short-ranged depletion interaction60,61

V rij
� �

¼ E0 e�2a rij�lijð Þ � 2e�a rij�lijð Þ
h i

; (5)

where rij = rj � ri, rij = |rij|, E0 is the interaction strength,

lij ¼
1

2
li þ lj
� �

is the mean of the diameters of particles i and j,

and a sets the attraction range (we take a = 25l�1). While this is
longer-ranged than the ‘‘Baxter limit’’ of vanishing range,2

different ranges can be mapped by a law of corresponding
states62 and the dynamics can also be scaled.85

The equation of motion is (1), in which the solvent force is

Fsolv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0kBT
p

n where T is the temperature, and n a unit
white noise. The particles move in a periodic simulation box of
dimensions L> � L> � L8 with L> = 20l and L8(t = 0) = 30l. The
Brownian time is tb = l0l2/(24kBT). Two natural dimensionless
parameters of the model are E ¼ E0= kBTð Þ which measures the

strength of the depletion attraction, and l ¼ l0l=
ffiffiffiffiffiffiffiffiffiffi
mkT
p

which
measures the solvent damping. In addition, the system undergoes

elongation at shear rate _g0. This yields an additional dimensionless
parameter _g = tb_g0.

In practice, the strain is increased stepwise, with a fixed time
period of Dt = 250tb between steps, so the strain in each step is
_g0Dt. When measuring the stress (see below), we average the
results over the period Dt, to reduce the effects of (fast) thermal
fluctuations. To confirm that the stepwise elongation does not
affect the results, we also performed simulations with contin-
uous elongation, which results in very similar behaviour.

The numerical simulations are implemented in the LAMMPS

package86 in which the natural time scale is t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml2=kBT

p
,

this means that tb/t0 = l/24 E 0.42 for the parameters used
here. The integration time step is 10�4t0. The natural unit of
both pressure and stress is kBT/l3; all results for such quantities
are quoted relative to this baseline.

To compare to relevant experimental units, we realize that
corresponding experimental systems of sticky colloidal gels have
typical diameters c between 0.1 and 3 mm.61,87 This allows for a
variation of corresponding Brownian times between tb B 0.005–
7 s and pressure units between kBT/s3 B 10�4–101 Pa.

4.2 Preparation of the model gel strand

To set up the strand before elongation, we first initialize a bulk
simulation of the model colloid in the NPT ensemble with a low
interaction strength E ¼ 0:01 and a constant pressure. We set
P0 = 0.16 and slowly increase the attractive strength to E ¼ 2:5,
using steps of DE ¼ 10�6 every 2tb. This causes the volume
fraction to increase to f E 0.59, the system remains homo-
geneous because this isobaric transformation not enter the
spinodal decomposition regime.87 We allow this dense homo-
geneous fluid to relax for a time tglass.

We then switch to the NVT ensemble and instantaneously
adjust E to the desired value, in the range 4.5–10. The strong
attractive interactions induce additional dynamical arrest and the
system forms a glass-like system. After this point, we allowed the
simulations to relax for another time tglass. The system is now
inside the liquid–vapour binodal, but the glassy dynamics are slow
enough that phase separation is not observed. (We performed
simulations with tglass up to 105tb, the results depend very weakly
on this parameter. Results are shown for tglass = 104tb.)

The result is a homogeneous glassy state with volume
fraction f E 0.59. Our initial strand is obtained by excising a
cylinder of radius r0 from this system, after which we run
dynamics for approximately 1000tb, to allow the system to relax
any features that are artefacts of cutting out the cylinder. We
then start the elongation process.

A different initialisation technique was developed in ref. 88,
which might lead to better equilibration of the surface structure
of the strand. However, we do not expect strands of particulate
gels to be particularly well-equilibrated, so our simple initiali-
zation method is appropriate here.

4.3 Stress measurement

Our measurements of local stress use a volume-averaged repre-
sentation of the Irving–Kirkwood stress.64,65,89 Write pi for the
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momentum of particle i, also rij for the vector connecting
particles i and j, and fij the corresponding interparticle force.
Now consider a spatial region O whose volume is |O|. The mn
component of the IK stress for that region is

smnO ¼ �
1

jOj
XN
i¼1

1

mi
pmi p

n
i Wi;O þ

1

2

XN
i¼1

XN
jai

rmij f
n
ijjij;O

" #
; (6)

where Wi,O = 1 if particle i is in O and zero otherwise; similarly
jij,O is the fraction of the straight line connecting particles i, j
that lies within O.

Taking O to be the entire simulation box O* gives the total
stress S, which can also be computed from the virial. The
tensile force is then Fz ¼ L2

?s
zz
O� .

For a local measurement of stress at point r, we take O to be
a small cube of side lIK, centred at r. The resulting stress is
denoted by s(r). For local measurements, we take lIK = 1.5l,
which is sufficiently small to allow a local measurement, but
sufficiently large to avoid numerical uncertainties due to ther-
mal fluctuations (see Appendix A.2).

As discussed in the main text, it is sometimes convenient to
divide the system into nseg = 20 segments along the z-direction,
each of which has volume Vz = L>

2L8/nseg. Then define NZ as the
number of particles in segment Z. Taking O in (6) to be one of
these segments gives the tensile force in the strand, divided by
the cross-sectional area of the simulation box (which is L>

2).
However, the physically-relevant stress is the tensile force
divided by the cross-sectional area of the strand. This is
obtained by rescaling (6):

smnðZÞ ¼ Vz

Vs
smnOZ

(7)

where OZ is the segment of the box at position Z and Vs = NZpl3/
(6f) is the estimated volume occupied by the strand, within
that segment. (Here f = 0.59 is the volume fraction within the
strand, so pl3/(6f) is the mean volume per particle there.)

Note that the local IK stress is derived directly from the
equations for momentum conservation. As such, it accurately
reflects the fact that a locally stable gel strand (whose structure
is not changing with time), satisfies local force balance
div s(r) = 0 at every point r, that is,

X
m2fx;y;zg

@

@rm
smnðrÞ ¼ 0 (8)

which holds for n = x, y, z. See Appendix A.1 for further details.
It is not possible to build a local virial stress with this property.
(The IK method is not the only way to obtain such a stress
tensor, but it is a convenient one.65) The method-of-planes
method65 also measures the stress locally on a given plane, but
the volume-averaged method used here is more effective at
accurately reflecting the force balance condition (8). For exam-
ple, if the derivatives in (8) are estimated as finite differences
between adjacent measurement volumes then the volume-
averaged method stress gives much better numerical agree-
ment with (8) than the method of planes.

4.4 Stress anisotropy

The second invariant of the stress tensor measures the aniso-
tropy of the stress, as a scalar quantity that is independent of
the orientation of the coordinate system:

J2;O ¼
1

2
tr rO �

1

3
tr rOð Þ

� �2 !
: (9)

This quantity is zero if s is proportional to the identity, as
would be expected in the bulk of a simple fluid. In a region O
with large anisotropic stresses then J2 will be large. The von
Mises criterion81,82 for failure of solid materials states that
breakage will occur when the local J2 exceeds a threshold.

For strands under tension with homogeneous stress, the
dominant element of sO is szz E �szz(Z), leading to J2 p �szz(Z)2.
However, in an strand like the one in Fig. 4(e) with large
residual stresses, typical elements of sO have absolute values
larger than �szz(Z), leading to a much larger value of J2,O. It is
convenient to average this quantity over a segment of the
strand, as

SðZÞ ¼ lIK
3

VS

X
O2OZ

ffiffiffiffiffiffiffiffi
J2;O

p
: (10)

where the sum runs over cubic regions of size lIK
3, within

segment Z. Since J2,O is a (non-negative) measure of anisotropy,
one sees that %S captures anisotropic stress fluctuations within
the strand. (Such fluctuations are averaged away in the cross-
sectional stress �szz.)

4.5 Bond-breaking correlation function

To measure local particle rearrangements, we define bij(D;g) = 1
if particles ij are within a distance D of each other, when the
accumulated shear strain is g. Then the fraction of neighbours
of particle i that are lost between strains g and g + Dg is90

ciðg;DgÞ ¼

P
j

bijðD; gÞbijðD; gþ DgÞP
j

bijðD; gÞ (11)

We take D = 1.4l throughout as that is the average cut-off range
of particle interaction (other values would have given qualita-
tively the same results). A correlation function CB(g,Dg) is then
obtained by averaging ci over all particles in a suitable region,
which we take here to be the segment of the system with
position Z.

As additional context, Fig. 6 shows the bond-breaking cor-
relation function where we separate particles on the surface of
the strand from those in the interior. For this, we define the 20
particles in every Z segment at every time that are closest and
furthest away from the centre of the strand. Particles on the
surface relax faster than those in the interior, as there are fewer
bonds at the surface.54,91 Interestingly, the surface particle
relaxation time is independent on the Z-segment position. In
contrast, it is clear that the interior particles relax faster in the
neck, consistent with their local fluidization.

To estimate the rate of thermally-activated surface pro-
cesses, we observe from Fig. 6 that the time needed for particles
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to lose about half their neighbours is about 2 � 103tb (or g = 0.01
with the applied strain rate _g = 5 � 10�6). Thus we estimate our
thermally-activated surface processes rate as 0.5 � 10�3tb

�1,
comparable to the strain rate of the black line in Fig. 5.

4.6 Topological cluster classification

We analysed particles’ local environments using the TCC. For
each particle i, this yields: (i) its number of neighbours nn; (ii)
the number of fully-bonded tetrahedra in which it participates
ntet; (iii) the numbers of trigonal and pentagonal bipyramids in
which it participates, ntb and npb respectively. Details and
parameters of the TCC are the same as.71 These quantities
were then averaged over particles in a suitable region (typically
the segment of the system with position Z).
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Appendices

These appendices contain additional results and analysis to
further justify the methods and conclusions of the main text.

Movie S1 (ESI†) shows a single trajectory of Fig. 1 in the
manuscript where an strand undergoes failure. The 16 particles
that will make up the neck before breaking are denoted as red.
All other particles are blue.

Movie S2 (ESI†) shows the movie corresponding to Fig. 4(a
and b).

Movie S3 (ESI†) shows the movie corresponding to Fig. 4(e
and f).

Appendix A discusses our measurements of local stress.
Appendix B discusses numerical simulations of elongation of a
crystalline strand, for comparison with the amorphous gel
strands considered in main text. Appendix C discusses the
continuum rheological model of elongation and necking, includ-
ing the fitting to numerical data.

A Stress measurements
A.1 Validation of the Irving–Kirkwood stress

As discussed in the main text, we use the Irving–Kirkwood (IK)
stress s throughout this manuscript to measure the stress on
different length scales. Derivations of the IK stress are given in
ref. 47, 64 and 67 and implementation methods are shown in
ref. 65. In this manuscript, we use the volume averaged stress
from ref. 65. This approach ensures that the stress is self-
averaging when measured over large volumes O, which helps to
reduce statistical uncertainties. In particular taking O in (6) as
the full simulation box, the IK stress reduces to the standard
virial stress, which is

Smn ¼ �1

V

XN
i¼1

1

mi
pmi p

n
i þ

1

2

XN
i¼1

XN
jðaiÞ

rmij f
n
ij

2
4

3
5: (A1)

For local stress measurements, it is possible to define a local
virial stress by restricting the sums in (1) to particles in a
particular region. However, this choice does not ensure that
stress gradients cause changes in local momentum, nor that
force-balanced systems have div s(r) = 0. To see this, we
compute the (local) tensile force Fz(Z) in the strand by taking
O in (6) as a segment at position Z. Force balance requires that
qFz/qZ = 0, up to small corrections due to the thermal fluctua-
tions. Fig. 7(a) shows that this requirement is obeyed to high
accuracy for the IK stress, but it fails for the virial.

The other (non zz) components of the stress tensor also have
persistent non-zero values (these are local residual stresses). To
illustrate that these components come from the amorphous
structure of the strand (instead of fluctuating rapidly on the
time scale of velocity fluctuations), we calculate the time
correlation functions of the local and global stress:

CSðDtÞ ¼
X
mnazz

SmnðtÞSmnðtþ DtÞh i½

� SmnðtÞh i Smnðtþ DtÞh i�
(A2)

and

CsðDtÞ ¼
1

V

ð
V

X
mnazz

smnðr; tÞsmnðr; tþ DtÞh i½

� smnðr; tÞh i smnðr; tþ DtÞh i�dr:

(A3)

In these sums, both m and n run over the three Cartesian
directions x, y, z, but the term m = n = z is excluded.

Fig. 6 Repeat of Fig. 3a, but where we distinguish interior and surface
particles. These are defined as the 20 particles closest and furthest from
the centre of the strand for every Z-segment.
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Fig. 7(b) compares the global and local stress correlation
functions, during simulations of an strand without any elonga-
tion. The local stress correlations decay slowly, showing that
the residual stresses are long-lived. We attribute this to slow
structural changes in the (non-equilibrium) strand, thousands
of Brownian times are required for these changes to become
significant. By contrast, all elements of the global stress are very
small (except zz). As a result, the dominant contributions to CS

are fast thermal fluctuations, so this correlation function
decays quickly.

It is well-known that microscopic expressions for the local
stress tensor are not unique.65 We briefly discuss three aspects
of this issue. First, since these systems have significant residual
stresses, the value of s depends on the scale at which it is
measured. Our local stress tensor is measured by taking O in (6)
to be a cubic box of side 3l/2. This length scale is chosen for
numerical convenience: taking larger boxes tends to smooth
out the stress, but smaller boxes lead to a noisy signal (see
Appendix A.2 for further discussion of this point). Second, the
terms arising from pairwise forces in the IK stress are evaluated
by considering a linear interaction path between the particles.
Other paths are possible but the linear path is a simple and
convenient choice. For long-ranged forces, the choice of path
can significantly affect the stress, but for these short-ranged
Morse potentials, such effects are small (as long as a reasonable
path is used). Third, one might (in principle) also shift all stress
values by a global constant (the reference pressure), here we

insist that a very dilute colloidal suspension has a vanishingly
small (osmotic) pressure, so this constant is zero.

A.2 Averaging the stress

Throughout this work, we report IK stresses that are averaged
over a time period T = 250tb. We recall from Fig. 7b that this time
scale is small enough that the stress does not relax significantly,
but we do find that the averaging process reduces statistical
noise. (Specifically, we compute the stress at time points sepa-
rated by tb/2 and we average over 500 such time points to obtain
the reported values.) The justification of this averaging relies on
of the slow time evolution of the local stress (recall Fig. 7), which
is in turn due to the dynamically-arrested (solid) structure of the
strand. In the bulk of a simple fluid, this kind of averaging would
yield instead an isotropic stress tensor, although the situation
would be more complicated in systems with interfaces or applied
forces.66 As noted above, we also measure a volume-averaged
local stress, based on a cubic box of size lIK = 1.5l.

Fig. 8 illustrates the effects of these averaging procedures,
for representative strands. For the stress itself, larger averaging
times and volumes lead to smoother signals, as expected. This
is shown in Fig. 8(a and c). We also computed the stress
anisotropy %S(Z), as defined in eqn (10). In general, larger
averaging times and volumes suppress the effects of anisotropic
fluctuations. To faithfully capture these fluctuations (as in
Fig. 4), we use intermediate length and time scales for aver-
aging, as we now discuss.

We first consider effects of volume-averaging, over cubes of
volume lIK

3. The IK stress distributes the contribution of each
pair of particles along a line connecting them. For very small
volumes, this results in many cubes with no contribution to the
stress, and others with large anisotropic contributions. The
resulting mean stress is independent of lIK but the anisotropic
fluctuations behave as %S B lIK

�1 for small lIK. Fig. 8(b) plots
lIK%S(Z) for various sizes lIK. Increasing the box size up to lIK E
1.5l suppresses a noisy contribution from thermal fluctuations,
helping to reveal the reduction in %S near the neck. For larger
averaging volumes, the anisotropic fluctuations of the stress are
significantly reduced: this is because the anisotropic residual
stresses illustrated in Fig. 1(e and f) are being averaged away.
(Indeed, averaging over the entire cross section will eventually
yield the picture of Fig. 1(a and b), where anisotropic fluctua-
tions are much smaller.) Hence we choose lIK = 1.5l for our
measurements, which is large enough to suppress fluctuations
from thermal noise, without averaging away the physically-
relevant residual stresses.

For time averaging, the picture is simpler. Taking an average
over Tave = 250tb effectively suppresses fast thermal fluctuations
in the measured stress [Fig. 8(c)]. Since these fluctuations are
anisotropic, the time-averaging also suppresses the anisotropy
[Fig. 8(d)]. There is a broad range of times around Tave = 250tb

where these signals are stable. For much larger times, one loses
resolution in time due to local stress relaxation (from Fig. 7,
this happens on time scales are \1000tb). Hence we choose
Tave = 250tb for our measurements, as a sensible compromise
between time-resolution and noise reduction.

Fig. 7 (a) The tensile force FðZÞ ¼
Ð
x

Ð
ys

zz dx dy calculated from the
Irving–Kirkwood stress and the localized virial stress. Data correspond to
a single trajectory of Fig. 1(d) at g = 0.2, without averaging over the z
direction. (b) Time-correlation function of the global and local stress. Data
used in (b) was obtained from an unstrained strand at the same standard
parameters as (a).
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A.3 Additional information about stress distribution

Fig. 4(h) of the main text shows the distribution of the local stress
(more precisely, its zz component). We emphasized the differences in
this distribution between the neck region and the bulk of the strand.
We present here some additional information on these distributions.

At initialization, long-lived residual stresses are quenched into
the system: the tails of these distributions are roughly exponen-
tial, with different decay rates for positive and negative stress.
Fig. 9(a) shows that positive stresses are more common, but the
negative stress distribution has the fatter tail. Overall, the total
stress (which coincides with the average of this distribution) is
lightly positive at initialization, corresponding to a tensile stress.

Fig. 9(b) shows the stress in the bulk of the strand (away
from the neck), as the strand is stretched. The tensile force
increases during elongation corresponding to an increase in
the average of this distribution. However, this shift is weak, in
comparison with the residual stresses that are already present,
so it has a weak effect on the stress distribution.

We also note that the change in stress distribution for the
neck is not just an effect of its reduced thickness (which leads
to a change in the ratio of surface to bulk). We initialized
strands with different radii: they all have similar non-Gaussian
distributions of the stress (Fig. 10).

B Elongation of a crystalline strand

As a point of comparison for the strand elongation discussed in
the main text, we also performed similar experiments on a

Fig. 8 (a) The average cross-sectional tensile stress �szz, measured as a volume average over a region of size L8
2 � lIK. Averaging over larger regions

reduces the fluctuations, but the increased stress in the neck is clear in all cases (the neck is at Z E 0.35, in this case). (b) Corresponding measurement of
anisotropy of the local stress, as a function of the averaging volume (see text for a discussion). [The coloring of lines is the same as in panel (a).] (c) Tensile
stress, estimated by time-averaging over a time Tave. Increasing Tave smooths the data, but does not affect the signature of the neck, where �szz increases
(at Z E 0.2 in this case). (d) Corresponding stress anisotropy %S: time-averaging reduces the effect of fast anisotropic fluctuations: for the larger averaging
times, one sees a stable signal that comes from long-lived residual stresses. [The coloring of lines is the same as in panel (c).] Notes: blue lines correspond
to the parameters used for all stress measurements outside this figure; consistent with this, we take Tave = 250tb in (a) and (b) and lIK = 1.5l in (c) and (d).
Panels (a) and (b) are taken from a trajectory where the neck appears at Z E 0.35; panels (c) and (d) are from a different trajectory where the neck is at
Z E 0.2. Both trajectories have the same parameters, which are those of Fig. 1(c and d).

Fig. 9 Distributions of the local stress szz. (a) Comparison of the distribu-
tions for positive and negative stress values, before any elongation has
occurred. Data is found by measuring for 106tb without elongation. (b)
Stress distribution evolution far away from the neck (Z = 1) near the start of
the simulation (g = 0–0.05), just after the system has reached its stress
plateau (g = 0.03–0.05), and just before necking occurs (g = 0.35–0.4).
Data has been averaged over 6 trajectories from Fig. 1 in the main text.
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crystalline strand. We initialised a face-centred cubic (FCC)
crystal from which we excised a cylindrical strand. On elonga-
tion, a few plasticity events were observed, after which the

strand broke by a sudden mechanism resembling brittle fail-
ure. Results are shown in Fig. 11. Looking at the mesoscopic
stress, we can see that the magnitude of the local stress szz

increases at the failure point (Fig. 11(a)), as expected because
the strand is thinnest there.

However, a striking difference between the crystalline and
amorphous strands is the absence of residual stresses in the
crystalline case. As a result, the stress is relatively homoge-
neous. On computing the stress anisotropy in the crystal, we
find that %S(Z) is largest in the neck. This stands in contrast to
amorphous strand, where the stress was more homogeneous in
the neck, and %S(Z) was smaller there.

Comparing the tensile force between a strand and the crystal,
we notice a difference in failure mechanisms (Fig. 12). The
crystal strand breaks with a clear brittle-like failure as we have a
significant stress drop, while the strand has a ductile failure,
even though the particles in both simulations have the same
parameters. The only difference is the initialization history.

C Continuum model

The theory presented in the manuscript is based on the analysis
of ref. 46, although it can also be interpreted in the framework
of ref. 44 and 45.

C.1 Definition

The model uses a thin-filament approximation so the strand is
modelled in one-dimension (oriented along the z direction). We
define a local velocity, V(z,t) from which follows a local strain
rate, _gL(z,t) = qzV(z,t), that will differ in general from the
externally imposed strain rate _g. We also assume that only the
area of the strand A(z,t) is important, when considering mass
conservation. We will write our equations in the co-extending
frame of imposed strain rate _g. Hence we define45

Z = z exp(� _gt), (A4)

v(Z,t) = V(z,t)exp(� _gt), (A5)

a(Z,t) = A(z,t)exp( _gt), (A6)

where we have normalized z by the strand length L>(t), to keep
the new spatial variable Z between 0 and 1. Transformation to
this co-extending frame, the mass conservation equation
becomes

@a

@t
¼ � _gL � _gð Þa: (A7)

(Here and throughout we neglect advective terms from the
change of frame, which is valid for slow elongation rates.)

To account for forces in the strand, we write W(Z,t) for the
tensile stress in the z direction, averaged over the cross-section
of the strand. The tensile force is then aW and the system
remains force-balanced at all times, so

@

@Z
ðaWÞ ¼ 0: (A8)

Fig. 10 The stress distribution for different starting radii with no deforma-
tion. Data is found by measuring for 106tb without straining. Other
parameter values are those of Fig. 1 of the main text.

Fig. 11 The local stress szz (a) before neck formation (g = 0.015) and (b)
after neck formation (g = 0.038) for a system where particles are initialized
on an FCC lattice. (c) The corresponding measurement of anisotropy in the
stress tensor %S. Other parameter values are those of Fig. 1 of the main text.
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We assume that the stress evolves with an elastic loading term
and relaxes due to local plasticity events which yields

@W

@t
¼ G _g� pðW ; wÞ½ �; (A9)

where G is the elastic modulus and p the rate of plastic
relaxation, which depends in turn on an internal plasticity field
w (see below). More specifically, we follow ref. 46: p is zero when
W is less than a yield stress sY, and w behaves like a tempera-
ture, which controls the rate of ‘‘activated’’ plastic events. (As
discussed in the main text, such relationships are familiar from
shear transformation zone theory.68) Hence,

pðW ; wÞ ¼W � sY
tpðwÞsY

y W � sy
� �

(A10)

where y is the Heaviside (step) function and tp(w) = tref exp(1/w),
where tref is a reference time scale.

In the simplest case we take w as a constant parameter,
but this is not sufficient to capture the stress–strain relation-
ship observed in simulations. Instead we again follow46 in
promoting w to a dynamical variable whose relaxation is con-
trolled by the plastic time scale tp. Specifically, we take

@w
@t
¼ W

sY
pðW ; wÞ½w1 � w�: (A11)

where the parameter wN sets the steady-state value of w.

C.2 Homogeneous solution: qualitative behaviour and fitting
to numerical data

We first consider homogeneous solutions of this model, that is,
solutions where strain, area, W and w are independent of Z. At
early times, we have W(t) = Wt=0 + G _gt, which holds for times
short enough that W o sY. For long times, we have W(t) -

sY/(1 � _gtp) where tp is the plastic time in the steady state.

As discussed in the main text, an important question is:
when W reaches the yield stress sY and the plastic activity starts
to occur, does w relax quickly to wN, or is the time scale for this
relaxation compete with the relaxation of W to its steady-state
value? This determines whether a stress overshoot is observed.

The resulting model has several parameters, which we fit to
the data of Fig. 1(e) in a multi-step procedure. We identify
W with �szz (averaged over Z) and we fit the data at early times to
�szz = Wt=0 + G _gt, which yields G = 420 and Wt=0 = 0.5 [recall that
the units of both these quantities are kBT/l3]. We then consider
the plateau of �szz (before significant necking occurs): we fit the
plateau height to W = sY/(1 � _gtp) which yields tp = 180tb and
sY = 3.3. Note however that this tp is the steady-state value of
the plastic time scale: since tp = trefe

1/w then this is not itself a
parameter of the model. To obtain values for tref and wN we fit
the stress overshoot that occurs in Fig. 1(e) for _g = 5 � 10�4: this
yields tref = 180tb, and wN = 80, as well as the initial condition
wt=0 = 0.65. At this point all parameters have been determined
for the fitting in Fig. 1(e).

C.3 Necking as a linear stability of the homogeneous solution

To analyse necking, we consider the linear stability of the
homogeneous solution for ( _gL, a, W, w). We consider a perturba-
tion to the homgeneous solution at wavevector q, that is

_gLðZ; tÞ

aðZ; tÞ

WðZ; tÞ

wðZ; tÞ

0
BBBBBB@

1
CCCCCCA
¼

_g

a0ðtÞ

W0ðtÞ

w0ðtÞ

0
BBBBBB@

1
CCCCCCA
þ

d _gðtÞ

daðtÞ

dWðtÞ

dwðtÞ

0
BBBBBB@

1
CCCCCCA

expðiqZÞ (A12)

where the 0-subscripts indicate the solution to the homoge-
neous equation. Following,46 eqn (A7) fixes _gL in terms of a and
its time derivative. Linearising eqn (A8) determines da in terms

Fig. 12 (a) and (b) The cross-sectional stress �szz, averaged over z and the tensile force for a single trajectory of the strand of Fig. 1. and (c) and (d) for the
crystal. Particle parameters are the same.
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of dW, a0, W0. Linearising (A9), (A11) and using these two
relations yields a closed equation for the perturbation as

@

@t

dW

dw

 !
¼M

dW

dw

 !
(A13)

with stability matrix

M ¼
W0@WpðW0; w0Þ � pðW0; w0Þ �a0@wpðW0; w0Þ

�W0

a0
@W _wðW0; w0Þ @w _wðW0; w0Þ

2
64

3
75;
(A14)

where the notation _w is a shorthand for the right-hand side of
(A11), interpreted as a function of (W0, w0).

For W0 o sY, there is no plastic flow and M = 0: the strand
responds elastically and preserves its shape under elongation.
However, for W0 4 sY, the matrix always has one positive and
one negative eigenvalue, indicating that the homogeneous
solution is linearly unstable and a neck will form. This
situation – of a single real positive eigenvalue – corresponds
to the slow (or gradual) instability of ref. 44 and 45, which is
consistent with our numerical simulations.
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