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ABSTRACT
Colloids can acquire a dipolar interaction in the presence of an external AC electric field. At high field strength, the particles form strings
in the field direction. However, at weaker field strength, competition with isotropic interactions is expected. One means to investigate this
interplay between dipolar and isotropic interactions is to consider clusters of such particles. Therefore, we have identified, using the GMIN
basin-hopping tool, a rich library of lowest energy clusters of a dipolar colloidal system, where the dipole orientation is fixed to lie along the
z axis and the dipole strength is varied for m-membered clusters of 7 ≤ m ≤ 13. In the regime where the isotropic and dipolar interactions
are comparable, we find elongated polytetrahedral, octahedral, and spiral clusters as well as a set of non-rigid clusters, which emerge close to
the transition to strings. We further implement a search algorithm that identifies these minimum energy clusters in bulk systems using the
topological cluster classification [J. Chem. Phys. 139 234506 (2013)]. We demonstrate this methodology with computer simulations, which
show instances of these clusters as a function of dipole strength.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0225759

I. INTRODUCTION

The microscopic structure of amorphous systems has long
been interpreted in terms of pairwise correlations, from the work
of Ornstein and Zernike a century ago onward.1 However, in the
case of many phenomena, such as crystal nucleation2–4 and the
glass transition,5–8 higher-order correlations in structure have been
shown to be important. One way to tackle higher-order structure
has its roots in the work of Sir Charles Frank who showed that the
minimum energy cluster of 13 Lennard-Jones particles is an icosa-
hedron. Frank inferred “that this will be a very common grouping in
liquids.”5

It has since become possible to identify such icosahedra, and
other geometric motifs, in bulk systems.9–11 By identifying mini-
mum energy clusters for certain model systems12,13 and determining
bonds in a bulk system, one may identify groups of particles whose
bond topology is identical to that of isolated minimum energy clus-
ters. Therefore, in addition to isolated clusters,14–18 it is possible to
identify geometric motifs, which might be expected to be signifi-
cant in the bulk.10,19–21 The significance of identifying higher-order

structure in the bulk is that it enables unique insights into the
behavior of the system. For example, local structural motifs with
fivefold symmetry (icosahedra) have long been thought to play a
key role in the glass transition. Indeed, these underlie a leading the-
ory of the glass transition, geometric frustration.6 Icosahedra and
related geometric motifs have since been shown to play a signifi-
cant role in viscous liquids.8,9,11,22,23 These geometric motifs are also
implicated in the rigid network of colloidal gels.24,25 Other exam-
ples of the use of such geometric motifs include an understanding
of the mechanism of crystallization. This has been applied to crys-
tal nucleation.3,4,26–29 It has been possible to control crystallization
through fivefold symmetric structures.26

So far, this sort of analysis has largely been restricted to particles
with isotropic interactions. Of course, very many systems have parti-
cles that interact in an anisotropic manner, and so here, we make the
first steps in developing the methodology of higher-order structure
for this more general case. Among the simplest ways to introduce
anisotropy is through a dipolar interaction. For example, the Stock-
mayer model combines a dipolar interaction with a Lennard-Jones
potential,30 and this way is a simple model for a molecule with a per-
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manent dipole and magnetic nanoparticles.31 In colloidal systems,
dipolar interactions are often induced by an external AC electric
field or magnetic field.32 The phase behavior of these systems has
been studied in experiment32–35 and simulation.36 At sufficient field
strength, the particles organize into vertically oriented “strings.”33 In
addition to their fundamental interest, these electro-rheological fluids
have potential applications as smart shock absorbers and clutches37

as well as in photonic materials.38

Such dipolar colloids then form a suitable system with
anisotropic interactions in which to consider higher-order struc-
tures. Therefore, we consider the minimum energy clusters of a basic
model for dipolar colloids. Motivated by the comparable similar-
ity of the higher-order structure of colloidal fluids (represented as
hard spheres or particles with an effective attraction35) and Lennard-
Jones liquids, in that the same clusters are found in both,13,19,20,39 we
consider a combination of a Lennard-Jones and dipolar interaction
aligned along the z axis. That is to say, we consider the Stockmayer
model modified, such that the dipolar contribution is aligned in z.
Now, the minimum energy state of two dipolar particles is in align-
ment with the applied field. If we consider the case where more
particles are added to the system, then at low dipole strengths, how-
ever, the energy of the isotropic interaction must at some point be
comparable with the dipolar interaction. In a study of Stockmayer
particles, Miller and Wales30 discovered a rich family of clusters,
with complex knots and rings occurring at low dipole strength,
which forms a playground to study topological transitions.40 Other
more exotic possibilities include quadrupolar interactions,41 which
may potentially also be realized in colloidal systems.42

We have identified the minimum energy clusters of 6 ≤ m ≤ 13
particles for the case applicable to induced dipoles in an external
field. This was achieved with the basin hopping algorithm imple-
mented in the GMIN energy minimization package.13,43 In all cases,
we observe a string forming at high dipole strengths. The path-
way to string assembly as the dipole strength is increased reveals
a set of distinct clusters. We have characterized these structures
as Lennard-Jones polytetrahedra, non-Lennard-Jones polytetrahe-
dra (which tend to be stretched in the field direction), and clusters
based on octahedra and Bernal spirals. We also find that as the field
strength is increased further, non-rigid particles are found at high
fields and finally strings are formed.

Each minimum energy cluster has a unique bond topology
that can be identified by Voronoi decomposition. To characterize
particle-resolved experimental and simulation data, we have imple-
mented these new clusters into the topological cluster classification.10

This is a computational tool, which identifies target clusters by
their bond topology in bulk systems. This enables such minimum
energy clusters to be identified in systems at high volume fraction.
We finally demonstrate the validity of this approach with computer
simulation results.

This work is organized as follows: in the methodology
section (Sec. II), we first outline the energy minimization methods
(Sec. II A) before briefly describing the topological cluster classifi-
cation (Sec. II B) and finally the molecular dynamics simulations
with which we test our implementation in Sec. II C. The results
are presented in Sec. III. This is broken up into the results from
the energy minimization (Sec. III A), followed by the implementa-
tion of the topological cluster classification (Sec. III B). This itself is
divided into identification of stretched polytetrahedra (Sec. III B 1),

clusters based on the 6A octahedron (Sec. III B 2), and spiral clusters
(Sec. III B 3). We then consider the results from the computer sim-
ulations in Sec. III C. Finally, we discuss our findings in Sec. IV and
conclude in Sec. V.

II. METHODS
A. Energy minimization simulation

The system considered is a set of m particles interacting
through the Stockmayer potential, where the dipoles are fixed par-
allel to the z axis. The interparticle interaction is thus defined
as

βuljdip(r, θ) = 4βϵ[(
σ
r
)

12
− (

σ
r
)

6
] − βμ2 σ3

r3 (1 − 3 cos2 θ), (1)

where β = 1/kBT and θ is the azimuthal angle between the two
reduced dipole moments μ. Here, we set the thermal energy to
unity.

We consider clusters of size 6 ≤ m ≤ 13. In fact, the topol-
ogy of m = 6 clusters is already accounted for by work on systems
with spherically symmetric interactions, but we include these as
there are two structures that are not strings.10 Larger (m > 13)
clusters are, in principle, possible to calculate, but these are tech-
nically challenging to implement in the cluster search code, and
the resulting search is rather slow. Moreover, the role of higher-
order structure in dense amorphous systems, such as glassformers,
appears to be largely dominated by clusters with a single shell
around the central particle (m = 13) and smaller clusters.8 Other
examples, such as crystal nucleation, also tend to invoke smaller
clusters.28,44

The minimum energy cluster of each combination of m and μ
was explored using the GMIN energy minimization package.
A modified version of the in-built Stockmayer potential was used.
GMIN uses a “basin-hopping” algorithm to minimize the energy.13

The basin-hopping algorithm randomly perturbs the coordinates
and then performs an optimization that is rejected or accepted
based on Monte Carlo criteria. This is repeated until a specified
convergence criterion is met.

In the basin hopping, reduced units were used, with ϵ and
σ set to unity. The dipole strength was varied between 0 and 3.
25 000 basin-hopping steps were performed and temperature, which
determines the Monte Carlo basin hopping threshold was held at
1.5. It should be noted that as in all energy minimization simulation,
there can be no absolute assurance that these are the global min-
ima, but for each value of μ and m, the energy minimization was
repeated ten times. Only the lowest energy clusters were considered.
In the case of larger clusters (m = 12, 13), for high field strengths,
not all runs at the intersecting string–string transition converged
to the same shape. This is presumably due to the large interaction
strengths. However, our focus in this work is on the clusters rather
than the intersecting strings or strings, so we neglect this here.

B. Topological cluster classification
For a complete explanation of the topological cluster classifi-

cation, Malins et al.10 should be referred to. The topological cluster
classification identifies target clusters by their bond network; these
are polyhedra that are associated with a unique bond topology. The

J. Chem. Phys. 161, 144308 (2024); doi: 10.1063/5.0225759 161, 144308-2

Published under an exclusive license by AIP Publishing

 21 N
ovem

ber 2024 11:19:45

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 1. 4A, 5A, 6A, and 6Z clusters. Gray indicates ring particles; yellow indicates
spindle particles; and red indicates a single spindle particle.

bond network may be defined either with a distance criterion or with
a Voronoi decomposition combined with a distance criterion. As the
basic building block for clusters, the algorithm identifies all the three,
four, and five-membered rings, which can be constructed along the
bond network. Rigid structures are built by considering all the parti-
cles that are bonded to every member of each ring. From these small
rigid clusters, larger and more complex shapes are built. Figure 1
shows the three basic clusters of interest here: the 4A (tetrahedron),
5A triangular bipyramid, 6A (octahedron), and 6Z (polytetrahe-
dron).45 The gray particles indicate rings, and the yellow particles
are spindles. Where a particle is both a ring and a spindle, they
are colored for clarity. The bonds indicate rings. The red particles
are bonded to three particles as part of a single-spindle 4A cluster
(Fig. 1).

C. Molecular dynamics computer simulation
We will show that in the Lennard-Jones dipolar system, a

number of novel minimum energy clusters are found. Cluster
populations are an important characteristic of colloidal fluids. In
order to demonstrate the viability of these clusters as a character-
istic of dipolar colloidal systems, we perform molecular dynamics
computer simulations and use the topological cluster classifica-
tion to identify the target clusters. Simulations were performed
with the Large-scale Atomic/Molecular Massively Parallel Simu-
lator (LAMMPS) molecular dynamics package46 with Brownian
dynamics time integration.47

Simulations are performed on a system of 512 particles, at an
effective volume fraction of around 0.0509, with the effective hard
sphere diameter determined with the Barker–Henderson method,
where we consider the repulsive part of the interaction potential to
define the hard core.1 Simulations are carried out for the following
values of the dipole strength: μ = 0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4,

and 2.7 (for each case, the dipole strength is constant throughout the
simulation). The simulations are run for 5 × 108 time steps with a
time step of 0.000 01.

Now, the Lennard-Jones interaction can lead to bulk phase
separation. It is known that adding a weak, long-ranged repul-
sion can stabilize clusters,48 which interact with one another very
weakly. Such weakly repulsive clusters have been realized on exper-
iments in colloids and proteins.49,50 The topology of such clusters,
stabilized by long-ranged repulsions, has been investigated in sim-
ulation and experiment for systems with spherically symmetric
interactions.14,51,52 In that case, a sufficiently weak Yukawa repul-
sion was found not to perturb the cluster topology significantly, with
respect to the case of isolated clusters without the repulsion.14,16,51

Here, we apply the same principle of using a long-ranged repulsion
to stabilize clusters to the Lennard-Jones dipolar system. To achieve
this, we add a weak Yukawa potential to Eq. (1) of the form

βuyuk(r) = −βA
e−κr

r/σ
, (2)

where the prefactor A = 1 and inverse screening length κσ = 0.5.
The simulations are then evolved according to βusim(r, θ) = βuljdip
(r, θ) + βuyuk(r).

III. RESULTS
A. Minimum energy clusters of the fixed dipolar
Lennard-Jones system

The change in topology of minimum energy clusters as the
cluster size and dipole strength are varied may be represented as
a “phase diagram” in the energy E—dipole strength μ plane, as
shown in Fig. 2. For all cluster sizes, at high dipole strengths, the
minimum energy cluster is a string, and at low dipole strengths,
with the minimum energy cluster, we recover the Lennard–Jones
minima. For m = 6, the minimum energy Lennard-Jones cluster is
the 6A octahedron (Fig. 1). For 7 ≤ m ≤ 13, the minimum energy
clusters are polytetrahedral and are denoted by 7A, 8B, 9B, 10B,
11C, 12B, and 13A13 in the nomenclature of Doye, Wales, and
Berry12 and are shown in Fig. 13 in the Appendix for complete-
ness. At high field strength, the particles form an interlocking string

FIG. 2. Summary “phase diagram” of the clusters of Lennard-Jones particles, with
a dipole whose direction is fixed in the z direction determined using GMIN. The
dotted lines indicate the change of structure.
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FIG. 3. Structural phase diagrams for clusters of size m = 6 to m = 9. Representation of the minimum energy cluster of six to nine dipolar particles as a function of dipole
strength μ and their associated energy. The dashed lines indicate the change of structure. The dotted line is a best fit through the energy corresponding to each geometry.

FIG. 4. Structural phase diagrams for clusters of size m = 10 to m = 13. Representation of the minimum energy cluster of 10 to 13 dipolar particles as a function of dipole
strength μ and their associated energy. The dashed lines indicate the change of structure. The dotted line is a best fit through the energy corresponding to each geometry.
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TABLE I. Detection routines for all the rigid minimum energy clusters of dipolar particles whose dipole is fixed with respect to an external axis. Here, “P” clusters are spiral, “S”
clusters are polytetrahedral but “stretched” with respect to the Lennard-Jones clusters, and “O” clusters are based on 6A octahedra. The letters “AA” in the spiral cluster name
indicate that both ends of the cluster are rigid; “AB” or “BB” would indicate that one or both ends were non rigid. Detection for the spiral clusters mPAA, mPAB, and mPBB is
given in Sec. III B 3.

Cluster Detection routine Figures

8O A 6Z cluster and two 4A clusters, where 6Each 4A cluster shares three particles with the 6Z and the two 4A clusters have no particles in common

9S
An 8B and a 5A, where

5The clusters share a spindle particle and two ring particles.
The remaining ring particle of the 5A is the “additional” (not part of a 7A) particle of the 8B.

9PAA

Two 6Z clusters and one 5A cluster where:

7

The 6Z clusters share a common spindle and two common ring particles.
The remaining spindle of each 6Z cluster is a ring particle of the other.

The 5A shares a common spindle particle with 6Zi.
The 5A shares two ring particles with 6Zi. The remaining 5A ring particle is the remaining spindle 6Zi.

All the particles in 5A and 6Zj are distinct

10S
A 7A and a 5A cluster where:

5The clusters have one common spindle particle and one common ring particle.
The clusters have only two particles in common.

10PAA Two 9PAA clusters which have eight particles in common 7

11S

Three 7A clusters where:

5
7Ai and 7Aj form a 9A.

The ring of 7Ak is the uncommon spindle of 7Aj and an uncommon ring of 7Aj.
The ring particles of 7Ak comprise the other uncommon ring of 7Aj,

The common spindle particles of 7Ai and 7Aj, one common ring particle of 7Ai and 7Aj

11SB

Two 7A and two 5A clusters, where
57Ai and 7Aj form a 9A and 5Ai and 5Aj have a common spindle.

One ring particle of 5Aij is a spindle of 7Aij, and this spindle is not the 7Aij shared spindle.
Two ring particles of 5Aij are ring particles of 7Aij, and these ring particles are not shared between 7Aij.

11O

Two 6A clusters and two sp3b clusters, where

66Ai and 6Aj have two particles in common.
sp3bij has three common particles with 6Aij and none with 6Aji.

There is no sp3bk within 6Ai and 6Aj which has common particles with both sp3bi and sp3bj.

12S

Three 7A clusters, where

57Ai and 7Aj share 3 particles. 7Ai and 7Ak share 3 particles.
7Ak and 7Aj share four particles. 7Ai has a spindle particle which is a ring of both 7Aj and 7Ak.

7Ai has a ring particle which is a spindle of both 7Aj and 7Ak. Any two 7A have a common ring particle.

12SB
A 11SB and a 5A, where

5One spindle of the 5A is the common spindle particles of the two 7A clusters within the 11SB.
Three particles of the 5A are common with one of the 7A clusters within the 11SB.

12O
Two 6Z and two sp3b clusters, where

66Zi and 6Zj share two particles. sp3bij has three common particles with 6Zij and none with 6Zji.
There is no sp3bk within 6Ai and 6Aj, which has common particles with both sp3bi and sp3bj.

13S

A 12SB and a 5A cluster, where

5One ring of the 5A is the “additional” (not part of an 11SB) particle of the 12SB.
One ring of the 5A is an “additional” (not part of a 9B) particle of the 11SB within the 12SB.

The remaining ring particle of the 5A is common with the 12SB.
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two-particles thick, which transitions to a string one-particle thick
upon further increase in the field. Between these regimes of Lennard-
Jones clusters and strings, the intermediate clusters may be grouped
as polyetrahedral, clusters based on 6A octahedra (Fig. 1), and spiral
clusters.

Figures 3 and 4 show the full cluster “phase diagrams” for
cluster sizes from 6 to 13 particles. As shown before in Fig. 1,
the gray particles indicate rings and the yellow particles are spin-
dles. Where a particle is both a ring and a spindle, they are col-
ored for clarity. Bonds indicate rings where the color indicates
the ring. The red particles are bonded to three particles as part
of a single-spindle 4A cluster (Fig. 1). The purple particles are
non-rigid.

B. Identification of clusters with the topological
cluster classification

Once the minimum energy clusters have been determined,
we seek a means to identify them in bulk coordinate data, either
in experiments or simulations. To this end, we have implemented
the new clusters into the topological cluster classification. Table I
presents the detection routines whereby each rigid cluster may be
identified from simulation or experimental coordinate data. Figure 1
shows four structures, which are the building blocks of all the larger
rigid clusters. We now describe the detection procedure for each
geometry—stretched polytetrahedra, octahedra-based, and spiral
clusters.

1. Non-Lennard-Jones “stretched” polytetrahedra
As the dipole strength is increased from zero, the first class of

clusters are non-LJ polytetrahedra. The dipolar interaction acts to
elongate the cluster, moving one or more particles from the sides of
the cluster to the top or bottom. We denote these clusters by “S” due

FIG. 5. Renderings of non-Lennard-Jones or “stretched” polytetrahedral clusters.
For 9S, the five-membered ring is denoted with the white bonds and three-
membered ring with the blue bonds. For 10S, the interlocking five-membered rings
are indicated with the blue and white bonds. The three-membered ring toward
the top of the cluster is indicated with the pink bonds. The two interlocking five-
membered rings of 11S and 11SB are shown in the blue and white bonds. In the
case of 12S, the 2 five-membered rings are indicated in blue and white and the
three-membered ring is shown in pink. For 12SB, the 3 five-membered rings are
indicated in white, blue, and pink. For 13S, the interlocking five-membered rings
are shown in blue and white. The 13SB has a three-membered ring (blue) and a
five-membered ring (white).

to their stretching with respect to the μ = 0 case. For m ≥ 11, there is
more than one polytetrahedral minimum before the system transi-
tions to the spiral or octahedral cluster. These clusters are shown in
Fig. 5.

The 9S and 10S clusters are formed by taking the Lennard-
Jones cluster for eight or nine particles and adding an additional
particle such that this particle forms a 5A triangular bipyramid,
which points in the direction of the field. The 11S and 12S clusters
are formed from two and three intersecting 7A pentagonal bipyra-
mids, which are stacked such that the cluster is elongated parallel
to the field. The 11SB cluster is formed from the 9A cluster with
two additional particles, each forming a 5A at either end of the
cluster. The 12SB cluster is formed from an 11S cluster with an
additional particle added to form a 5A aligned with the dipoles.
The 13S cluster is formed from a 12SB cluster with an additional
particle forming a 5A. Finally, the 13SB is a 12S with an addi-
tional particle forming a three-membered ring. 13SB is the only
non-rigid cluster that is not a spiral, an interlocked string, or a
string.

2. Octahedra-based clusters
For m = 8, m = 11, and m = 12, there is no point where the

energy minimum is the non-rigid mPAB spiral (see Sec. III B 3);
instead, between the non-LJ polytetrahedra and the mPBB non-rigid
spiral, the energy minimum cluster is based on the 6A octahedron.
We, therefore, denote these clusters as “O:” 8O, 11O, and 12O (see
Fig. 6). These clusters are intersections between 6A octahedra and
4A tetrahedra (see Table I).

8O is formed from a 6A cluster and two 4A clusters. 11O is
formed by two intersecting 6A clusters, which share two rings and
one spindle particle. The remaining spindle and ring of each 6A form
a 4A cluster with one additional particle. 12O is also formed from
two 6A and two 4A clusters; however, here the 6A clusters share two
ring particles but no spindles. 11O and 12O, therefore, represent two
types of octohedral clusters differentiated by the number of parti-
cles shared by the 6A. The next largest octahedral clusters of type
11O would be 14O, 17O, and 21O. The next largest clusters of type
12O would be 16O, 20O, and 24O. The study of these larger octahe-
dral clusters would be a useful target for future research, subject to
the caveats noted above.

3. Spiral clusters
For each cluster size studied, there is a range of values of dipo-

lar strength μ, where the minimum energy cluster is a spiral. For
each value of m, there are three spirals denoted PAA, PAB, and PBB;

FIG. 6. Renderings of clusters based on the 6A octahedron. The 2 three-
membered rings are rendered with white bonds in the 8O cluster. For 11O,
the 2 four-membered rings are indicated with white and blue bonds. For the 12O,
the four-membered rings are shown in blue and white.
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FIG. 7. Renderings of spiral clusters. For 7PAA, 7PAB, 8PBB, 9PAA, and 9PBB, the 2 three-membered rings are indicated by the blue and white bonds. In the case of 10PAA,
the 3 three-membered rings are indicated by the blue and white bonds. For 10PAB and 10PBB, the 2 three-membered rings are indicated by the blue and white bonds. For
11PBB, the 2 three-membered rings are indicated by the white and blue bonds. The 12PBB has 3 three-membered rings indicated by the white, pink, and blue bonds. For
13PAB and 13PBB, the 3 three-membered rings are indicated by the pink, white, and blue bonds.

however, only for m = 10 are all three clusters an energy minima
for some value of μ. As shown in Fig. 7, the basin-hopping simu-
lations have identified the following clusters as energy minima for
some value of μ: 7PAA, 7PAB, 8PAB, 9PAA, 9PBB, 10PAA, 10PAB,
10PBB, 11PBB, 12PBB, and 13PAB. The mPAA are fully rigid; mPAB
have one non-rigid particle (purple in Fig. 7); and mPBB have two
non-rigid particles. We note that for N = 8, 11, and 12, the octa-
hedral cluster would appear to replace the PAB cluster. Having a
helical structure, the spiral clusters are chiral. The basin-hopping
output both right- and left-handed spirals. These have the same
energy, and the TCC search algorithm does not differentiate between
them.

We will first consider the rigid spirals 9PAA and 10PAA. The
spiral mPAA cluster is comprised of m − 5 intersecting 6Z clus-
ters. 6Z is the minimum energy cluster of six particles interacting
through the Dzugutov potential and the Lennard-Jones–dipolar
interaction for suitable values of μ [Fig. 3(a)]. Since 6Z is itself
two intersecting 5A clusters, the spirals may equally be consid-
ered intersecting 5A. Figure 8 shows the labeled particles in a 6Z
cluster. To be considered 6Z, the two 5A clusters must intersect

FIG. 8. 6Z cluster with labeled particles. See the text for the interpretation of the
labels.

such that they share two ring particles rc1 and rc2. The remain-
ing ring particle of each cluster must be a spindle particle of
the other sc1 and sc2. The final two spindles are denoted as sd1
and sd2.

Figure 9 shows the constituent 5A and 6Z clusters for 10PAA. If
one particle is removed from either end of 10PAA, we have a 9PAA
cluster comprised of four intersecting 6Z or five intersecting 5A.
A 10PAA cluster adds another particle to this 9PAA, such that the
additional particle forms a spindle of another intersecting 5A clus-
ter. This new 5A cluster must intersect with the lower or upper 5A
cluster such that a new 6Z cluster is formed (Fig. 10).

To build larger spirals, this same routine is performed at the
ends of the spiral. In a 6Z cluster, there are only two 5A clus-
ters, but for larger spirals, there will be more; only the 5A clusters
at the top and bottom of the cluster can grow the cluster by
forming a new 6Z. Therefore, in the implementation of the topo-
logical cluster classification, each particle must be assigned its own
index.

The other class of spiral clusters is the non-rigid. In these clus-
ters, an additional particle is added to a spiral, which is bonded in a
three-membered ring to the non-shared spindle and the non-shared
ring particle of the outermost 6A. In the implementation of the topo-
logical cluster classification, this third particle must have only two
bonds to the existing cluster.

C. Results from molecular dynamics simulations
The populations of all the minimum energy clusters obtained

from the molecular dynamics simulations performed, as described
in Sec. II C, will now be considered for various values of the dipole
strength μ. Snapshots are shown in Fig. 11 for certain values of μ.
We emphasize that our purpose here is to provide a demonstration
of the use of the topological cluster classification for the Lennard-
Jones–dipolar system that we have developed, rather than to carry
out an exhaustive study.
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FIG. 9. Building the 10PAA cluster from (a) six intersecting 5A or equivalently (b) five intersecting 6A clusters.

The results shown in Fig. 12 show the populations of all the
clusters, grouped by size, as a function of μ. This shows that the
populations of the different classes of clusters show qualitative agree-
ment with the transitions shown in Sec. III B 3. At low dipole
strengths, the populations of Lennard-Jones clusters are highest. The
populations of the non-LJ stretched polytetrahedra are also higher
at the low dipole strengths, and in the cases of m = 10, 11, 12, and
13, the non-LJ polytetrahedra persist to higher field strengths than
the Lennard-Jones clusters. The results show that the peak in the
population of the 8O and 12O octahedra-based clusters is found
at intermediate field strengths. These clusters are both observed
within larger octahedral columnar structures. The absence of the
11O cluster is suggested as an avenue for future research. Finally,
the populations of smaller spiral clusters 7PAA, 7PAB, and 9PBB
peak at μ ≈ 1. This is at a higher value of μ than the octahedral clus-
ters, which is qualitatively consistent with the transition found in the
basin-hopping simulations. It may be expected that for larger clus-
ters, the transitions shift to higher values of μ. Therefore, while the
peaks in octahedral, non-LJ polytetrahedra, and spiral clusters are at
higher values of μ than in the GMIN simulation results, these still
support a transition from Lennard-Jones to non-LJ polytetrahedra
to octahedra-based to spirals as the dipole strength is increased. The

FIG. 10. Adding particles to grow a spiral 7PAA cluster from a 6Z cluster. Panel (a)
shows 7PAA as two intersecting 5A clusters. Panel (b) shows the 6Z cluster and
the additional particle. Panel (c) shows how the additional particle forms 5A with
the original 6Z cluster.

results also imply that the order of these transitions would hold for
larger clusters.

IV. DISCUSSION
In determining its minimum energy clusters and implementing

these in the topological cluster classification, we introduce the ability
to carry out higher-order structural analysis for the dipolar colloidal
system. This opens a range of new materials, which can now be stud-
ied with this methodology. For example, helical structures at the

FIG. 11. Rendering of molecular dynamics simulation, with corresponding mini-
mum energy clusters shown. These snapshots were taken at the end of the run,
i.e., after 5 × 103 time units. The colors of the particles correspond to the lines by
the clusters depicted to the right of the snapshots.
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FIG. 12. Population of clusters as a function of dipole strength in molecular dynamics simulation data.

FIG. 13. Lennard-Jones minimum energy clusters, determined by Wales and Doye.13 These have been previously implemented in the TCC.10

microscale and nanoscale have been suggested as promising struc-
tures in opto-electronics53 and catalysis,54 and they have potential
for understanding chiral structure in biopolymers.55,56 The assem-
bly of Bernal spirals is also seen in systems of patchy colloids.57,58

In addition, string structures comprised of stacking tetrahedra have
also been observed in polarized, metallodielectric Janus particles59,60

and notably the active colloidal dipolar system.61 The observation
of helical structures in the potential energy landscape is, therefore,
of importance to a wide range of systems. It is quite possible that
many of the same structures that we have identified here would be
found in these systems, which would be interesting to explore in the
future.

In addition to these systems with anisotropic interactions,
some of the clusters that we have identified here have, in fact, also
been observed in systems with isotropic interactions. In particular,
so-called short-range attraction long-range repulsion or SALR par-
ticles50 have been shown to form Bernal spirals.62 Indeed, these are
consistent with minimum energy clusters determined for the SALR
potential.52 In the future, it would be an interesting extension of
this work to investigate the effect of weak repulsions in perturb-
ing the clusters from isotropic Lennard-Jones minima, along with
the other systems anisotropic interactions that we have mentioned
here.

While the computer simulations that we have carried out
merely serve as a proof-of-principle of the method we have imple-
mented, we nevertheless take the liberty to make a few comments. As
noted, the overall trends are very much in agreement with the expec-
tation of Lennard-Jones polytetrahedra, stretched polytetrahedra,
octahedra-based, spiral clusters, and strings as a function of dipolar

strength. However in the future, simulations that explicitly test
the predictions of the GMIN calculations, in the precise Lennard-
Jones–dipolar interactions (without the Yukawa contribution that
we used here) would be desirable. These could, for example, form
a model to explore kinetic trapping in an anisotropic system. For
example, in comparison with simulations that considered a system
with spherically symmetric interaction,51 there appear to be a rather
larger number of particles not identified in a minimum energy clus-
ter. Whether this is due to geometric frustration14 or some other
cause would be an interesting avenue for future research.

V. CONCLUSION AND OUTLOOK
We have identified a library of minimum energy clusters of par-

ticles with a Lennard-Jones interaction with a dipole fixed in one
direction. We consider cluster sizes 6 ≤ m ≤ 13. This model is rele-
vant to colloidal systems in which dipolar interactions are induced
by an electric field. These turn out to exhibit a rich structural “phase
diagram” with a variety of topologies. As the dipolar strength is
increased, the clusters transition from (relatively) isotropic poly-
tetrahedra, which are minimum energy clusters of the Lennard-
Jones model; these transition to “stretched” polytetrahedra, clusters
based on octahedra, to Bernal spirals, to interlocking, before finally
forming strings at high dipole strength.

We have implemented a search for these clusters in the topo-
logical cluster classification.10 Since the TCC uses bulk coordinate
data as its input, it is possible to investigate high-volume frac-
tion systems. This marks a step forward in being able to use this
kind of analysis of higher-order structure previously applicable
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only to systems with isotropic interactions to anisotropic inter-
actions. For example, insights into the mechanism of the glass
transition,8,9,11,22,23 gelation24,25 and crystallization3,4,26–29 are now
possible for these dipolar particles, and may be extended to other
systems with anisotropic interactions in the future. Finally, we
provide an example of such analysis with a molecular dynamics sim-
ulation for a system of clusters whose interactions are very similar to
the Lennard-Jones–dipolar interaction. We see a progression from
isotropic Lennard-Jones clusters through the sequence of geometries
to strings.
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APPENDIX: LENNARD-JONES CLUSTERS

Lennard-Jones minimum energy clusters, determined by Wales
and Doye, are shown in Fig. 13.
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