
Traveling Strings of Active Dipolar Colloids

Xichen Chao ,1 Katherine Skipper,2 C. Patrick Royall ,2,3 Silke Henkes ,1,4 and Tanniemola B. Liverpool 1

1School of Mathematics, University of Bristol, Fry Building, Bristol BS8 1UG, United Kingdom
2H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom

3Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
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We study an intriguing new type of self-assembled active colloidal polymer system in 3D. It is obtained
from a suspension of Janus particles in an electric field that induces parallel dipoles in the particles as well
as self-propulsion in the plane perpendicular to the field. At low volume fractions, in experiment, the
particles self-assemble into 3D columns that are self-propelled in 2D. Explicit numerical simulations
combining dipolar interactions and active self-propulsion find an activity dependent transition to a string
phase by increasing dipole strength. We classify the collective dynamics of strings as a function of
rotational and translational diffusion. Using an anisotropic version of the Rouse model of polymers with
active driving, we analytically compute the strings’ collective dynamics and center of mass motion, which
matches simulations and is consistent with experimental data. We also discover long range correlations of
the fluctuations along the string contour that grow with the active persistence time, a purely active effect
that disappears in the thermal limit.
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Active matter describes a new class of materials that are
composed of elements driven out of equilibrium by internal
sources of energy. They promise a novel route to function-
ality in materials design for numerous applications, from
drug delivery to metamaterials [1–7]. A major challenge,
however, is controlling activity, and using it to steer
emergent collective behavior toward a desired function.
One way to control it is by tuning the interplay between
active driving and passive mechanics at scales intermediate
between microscopic building blocks and macroscopic
scales [8]. These dynamic mesoscale structures can be
polymers [9–12], membranes [13], and disordered or
ordered solids [14–17]. Their complex internal dynamics
requires more detailed descriptions, going beyond long
wavelength hydrodynamics, to uncover the physical prin-
ciples required to accurately control them.
One-dimensional polymers are promising as their open

structure leaves them more susceptible to external con-
trols. Hence, there has been a resurgence of experimental
and theoretical work on active polymer systems [18–21].
Most experimental realizations of active polymer sys-
tems have been biological, e.g., motor-driven cytoskeletal
polymers [22] or living organisms such as worms [19].
Theoretical studies have included tangentially driven linear

polymers and ring polymers, mostly in 2D [20,23–25] and
more recently have begun to look at entanglement [26].
Biological components, however, are hard to control and
there is a need for systems built fromman-made (synthetic)
components.
Active Janus colloids are one of the simplest experimental

building blocks of synthetic active materials, their single
particle dynamics well approximated by active Brownian
particles [27–29]. Here, we use metallodielectric Janus
particles, which, when in an oscillating electric field, due
to induced-charge electrophoresis (ICEP) [30,31], simulta-
neously become active and interact via pairwise dipolar
interactions. The colloids sediment to the bottom of the
sample where they can self-assemble into 2D polymer-like
motile chains [32–34]. Recent experiments have shown,
however, that it is possible to study this system in3Dbyusing
smaller Janus particles, which due to their size sediment
markedly less [35]. At low volume fractions, the particles
self-assemble into active columns (strings) that self-propel in
the plane perpendicular to their axis.We note it is well known
from experiments [36,37] and simulations [38] that passive
dipolar colloids exhibit a passive string fluid phase at low
volume fraction.
In this Letter, we study the collective dynamics of the

low density phase of actively traveling strings through a
combination of experiment, computer simulation, and
analytical theory. We carry out experiments with metal-
losilica Janus particles which we study with confocal
microscopy at the single-particle level [39]. Our numerical
model combines short range repulsion, dipolar interactions
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in the direction of the field and self propulsion, and we find
an activity-dependent transition to the active string phase as
a function of dipole strength. We explore the collective
dynamics of strings as a function of rotational and trans-
lational diffusion strengths. Using a generalized Rouse
model of anistropic three-dimensional flexible polymers
with active driving allows us to capture the string dynamics.
In addition to explaining the global string dynamics, this
predicts a purely active emergent correlation length along
the strings. We verify that our theoretical model agrees very
well with simulations and is consistent with experiments.
Experiment—We use the 3D ICEP system [35]. A

suspension of metallodielectric Janus particles of diameter
σ0 ¼ 1.5 μm in milli-Q water and dimeythl siloxane at
volume ratio 7∶10 is placed in an oscillating electric fieldE.
This solventmatches the refractive index of the particles, but
not the density. The gravitational length of passive particles
in the absence of the electric field is≈ 0.15σ0. Because of the
electric field induced activity, this rises to≈ 2σ0. We study a
fixed volume fraction ϕ ¼ 0.05. In this system, the Janus
colloids move like active Brownian particles (ABPs) in a
plane orthogonal to the field (xy) and diffuse in the third
dimension (z) [Figs. 1(a) and 1(b)]. Because of the imbal-
ance of the dielectric constant between the solvent and the
particles, dipolar interactions are induced by the external
electric field,which point in the direction of the field. For our
parameters (5 kHz and NaCl at a concentration of 0.1 mM),
the interactions between the particles can be approximated
as a single effective dipole located at the center. The Debye
screening length is ≈26 nm.
Simulation—We model the interactions between our

dipolar active colloids by a hybrid potential that combines
the short-range repulsiveWeeks-Chandler-Anderson (WCA)
potential with a dipole-dipole (DD) pair interaction [38].
In experiment, the dipole moments are aligned with the
oscillating electric fieldE ¼ Eẑ [33,35]. Hence, all particles
have a dipole moment p ¼ pẑ with dipole strength p (that
increases with jEj). The interaction potential between par-
ticles i and j, is UHY;ij ¼ UWCAðrijÞ þ UDDðp; rijÞ with

UWCAðrÞ¼ 4ϵ

��
σ

r

�
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−
�
σ

r

�
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�
; r < 21=6σ;

UDDðp;rÞ¼
1
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ðp ·pÞ− 3

r5
ðp · rÞðp · rÞ; ð1Þ

where rij ¼ ri − rj is the interparticle separation and
rij ¼ jrijj. We choose units such that the WCA potential
strength ϵ ¼ 1 and the particle diameter is σ̄ ¼ 21=6σ ¼ 1.
The DD pair interaction is attractive along the direction
of the polarization p and repulsive in the orthogonal
plane, naturally leading to the formation of parallel strings
along ẑ. Because of ICEP, each Janus particle rotates until
the interface between the two halves is parallel to E,
and therefore self-propels in a direction in the xy plane
[Fig. 1(d)]. The Debye screening length in experiment is

much smaller than particle diameter, allowing us to cut off
dipole interactions after the first neighbor for computa-
tional efficiency.
We combine UHY;ij with overdamped active Brownian

dynamics without hydrodynamics,

ṙi¼−
1

ζ

X
j≠i

∇iUHY;ijþv0n̂iþηTi ;

n̂i¼ðcosθi;sinθi;0Þ; θ̇i¼ ηRi ; ð2Þ
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FIG. 1. The active travelling string system in experiment and
simulation. (a),(b)Confocalmicroscopy imagesof the experimental
system with electric field amplitude E ¼ 1

3
V=μm at 5 kHz

frequency; in the lateral xy plane (a) and vertical xz plane (b).
Scale bars are 10 μm. The experimental data (and SMmovie 1 and
snapshots) are samples taken far from the experimental boundaries
in the x; y direction and the upper z boundary but close to the lower z
boundary. (c) Snapshot from simulations visualized in OVITO [40],
at packing fraction 5%: different colors indicate different clusters.
(d) Schematic of the Janus particle used in experiments. The
dipoles pi ¼ ð0; 0; pÞ are aligned with electric field direction and
perpendicular to self-propelling velocities v0 ¼ v0ðcosθi;sinθi;0Þ.
r ¼ ðx; y; zÞ is the vector separating the positions of two bead
centers. (e) The bond vector for a single string, with rn the position
of the nth bead.
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where fri; θig are the position, orientation of the ith particle,
and ζ is the Stokes drag. We include activity with self-
propulsion speed v0 (that in experiment increases with jEj) in
the direction n̂i, which is constrained to the xy plane,
orthogonal to ẑ [Fig. 1(d)]. Its in-plane angle θi diffuses with
rotational white noise ηRi , with correlation hηRn ðtÞηRmðt0Þi ¼
2DRδðt − t0Þδnm, where DR is the rotational diffusion coef-
ficient. We also include translational white noise ηTi in all
directions, with correlations hηTαnðtÞηTβmðt0Þi ¼ 2DTδðt −
t0Þδαβδnm where DT is the translational diffusion coefficient.
For most runs, the simulation box is periodic in all three
dimensions and we use LAMMPS [41] with a custom ABP
integrator [42].
In our simulations, we systematically vary the dipole

strength, speed, and diffusion coefficients via the parame-
ters ½p; v0; DR; ðDT=σ̄2DRÞ� while maintaining a fixed low
volume fractionϕ ¼ 0.05. Strings are defined by a clustering
algorithm with neighbor cutoff distance 1.05σ̄ [Fig. 1(c)].
Here, we first locate the transition to the string phase by
varying p and v0 independently for intermediateDR ¼ 0.15
and differentDT [Figs. S2.1(a)–S2.1(d) [43] ]. The transition
from a disordered phase at low p to a string phase at high p
shifts from around p ¼ 0.2–0.3 at v0 ¼ 0.1 to p≲ 1 at
v0 ¼ 0.7. Then we fix p ¼ 1 and v0 ¼ 0.5, which is in the
string phase in almost all cases.
We find that string formation is subject to slow coars-

ening dynamics, necessitating runs of t ¼ 20 000 time units
to reach steady state (Fig. S2.2a [43]). Strings also rapidly
lengthen when p increases (Fig. S2.2b [43]), and we switch
to a tall simulation box Lx × Ly × Lz ≡ 20 × 20 × 80 for
our main runs [Fig. 1(c)]. Strings can still span the system,
so we cut off string size at Lz=σ̄ ¼ 80.
The persistence of active driving is regulated by rota-

tional, DR and translational, DT diffusion. If fluctuation-
dissipation theorem (FDT) holds, DT ¼ kBT=ζ and
DR ¼ kBT=ζr. For Stokes’ drag, where σ̄2ζ ¼ 3ζr this

implies that ðDT=σ̄2DRÞ ¼ 1
3
in simulation units. Another

limit [27], is where orientational noise dominates and
DT ≈ 0 (“persistent”). Finally, when DR is very large we
have an effectively thermal system with a renormalized
active temperature (“thermal”) [Supplemental Material
(SM) movies 4–5 [43] ]. The two axes of our phase
diagrams are then DR and ðDT=σ̄2DRÞ, with DR varying
from 0.003 to 3, which correspond to an active limit and a
thermal limit respectively. ðDT=σ̄2DRÞ varies from 0 to 1

3
,

which indicate a persistent limit and the FDT limit,
respectively. With this parameter scan, we construct a
phase diagram that focuses on active string dynamics
[Figs. 2(a) and 2(b)]. We measure the mean size and mean
lifetime of strings, defined as time interval between
changes in string composition. With the exception of a
stringless phase at high DR and DT , i.e., a thermal FDT
limit, the value of DR predicts string properties. We find a
phase of medium-sized strings that interact through colli-
sions with lifetimes τl ∼ 100 when DR is relatively low
(DR ≤ 0.06) and a phase of noninteracting solo strings with
rapidly increasing τl and lengths that exceed the system size
and wrap the box when DR ≥ 0.15. Collisional strings
move persistently and collide frequently (SM movies 2
and 3 [43]), while solo strings move diffusively with almost
no collisions (SM movie 4; Sec. 2 of SM [43]).
We probe the collective motion of traveling strings, first

focusing on the motion of their centroids. We can fit the
mean square displacement (MSD) of the centroids of the
strings in the xy plane to the MSD of an isolated two-
dimensional (2D) ABP [44,45]. The collective longtime
diffusion coefficient of centroids decays with string length
as Dl ∼ N−1 [see Fig. 2(d) and Eq. (4)], whereas the
collective self-propulsion speed decays with the square
root of length vc ∼ N−1=2 [Fig. 2(c)], and both are inde-
pendent of dipole strength p, and phase.

(a) (b) (c) (d)

FIG. 2. (a),(b) Phase diagrams of the mean lifetime and mean size of traveling strings. p ¼ 1, v0 ¼ 0.5 as a function of rotational
diffusion coefficent DR and ratio ðDT=σ̄2DRÞ. The three regimes and markers in these phase diagrams are determined by the mean
lifetime phase diagram. The color bar in the mean size phase diagram is linear and is logarithmic in the mean lifetime phase diagram.
These phase diagrams are based on simulations with periodic boundary box size 20 × 20 × 80. (c) Self-propulsion speed of string
centroids vc. (d) Collective longtime diffusion coefficientDl [see Eq. (4)]. The two red lines are our theoretical predictions Eq. (4). Data
are extracted from simulations at v0 ¼ 0.1, DR ¼ 0.15, ðDT=σ̄2DRÞ ¼ ð1=30Þ, p∈ ½0.6; 0.7; 1.0; 1.4; 2.0�, with color bars indicating
dipole strength p. Error bars correspond to the standard deviation of the data. The Dl data are obtained from vc and the collective
translational diffusion coefficient Dc [see Fig. S3.2 [43] and Eq. (4)]. vc dominates Dl in this regime resulting in similar plot shapes.
Error estimated by assuming independent normal distributions. All data are picked from the last 5000 time units in steady state.
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Active anisotropic Rouse model—We can understand the
string dynamics by mapping a single string to an active
polymermodel. Solving∇UHYðrÞ¼ 0, gives the stable equili-
brium separation between two particles rð0Þ ¼ (0; 0;�aðpÞ),
which depends on the dipole strengthp. Expanding the hybrid
potential UHY near rð0Þ, gives an effective elastic potential
UE ≔ 1

2
ðr− rð0ÞÞ ·HUðrð0ÞÞ · ðr− rð0ÞÞT . The Hessian matrix,

HU, is diagonal with effective elastic constants, κ11ðpÞ ≔
ð∂2UHY=∂x2Þjr¼rð0Þ ¼ ð∂2UHY=∂y2Þjr¼rð0Þ and κ33ðpÞ ≔
ð∂2UHY=∂z2Þjr¼rð0Þ , functions of p and isotropic in the xy
plane. Both strongly increase with p, and κ33 ≫ κ11. See SM
Sec. 3.1 for details [43].
For a string of sizeN, the position of thenth particle can be

expanded around a rigid column as rn ≔ rð0Þn þRn where

rð0Þn ¼ð0;0;anÞ and fluctuations Rn ¼ðR1n;R2n;R3nÞ≔
ðxn;yn;znÞ, 1 ≤ n ≤ N [Fig. 1(e)]. The equations of motion
for the strings therefore are an active anisotropic Rouse
model [46] (see SM Sec. 3.2 [43]),

Ṙαn ¼
καα
ζ

∂
2Rαn

∂n2
þ Aαn þ ηTαn;

θ̇n ¼ ηRn ; ð3Þ

for α ¼ 1, 2, 3. Here, activity An ¼ ðA1n; A2n; A3nÞ is
confined to the xy plane, i.e., A1n ¼ v0 cos θn, A2n ¼
v0 sin θn and A3n ¼ 0. Using Rouse modes [23,46], the
equations can be solved analytically and various collective
quantities obtained. See SM Secs. 3.2–3.4 for details [43].
The motion of the centroid of the string is given by

the lowest (0th) Rouse mode. We therefore compute the
MSD of the string centroid in the xy plane to obtain
MSDstring ¼ 4Dctþ 2v2cD−1

R ½tþD−1
R ðe−DRt − 1Þ�, with an

effective translational diffusion coefficient Dc and the
collective self-propulsion speed vc. Comparing the collec-
tive MSDstring with that of a single ABP [44,45], we find

vc ¼
v0ffiffiffiffi
N

p ; Dc ¼
DT

N
; Dl¼Dcþ

v2c
2DR

¼Deff

N
: ð4Þ

We also obtain Dl, the longtime diffusion coefficient of
string centroids in terms of Deff ¼ DT þ v20=ð2DRÞ, the
longtime diffusion coefficient of an isolated Janus colloid
with both translational noise and active driving. Our result
also shows that the persistence time of the stringsD−1

R is the
same as that of a single particle. Hence, we find the
collective dynamics of traveling strings is solely governed
by their length and Eq. (4) accurately predicts the simu-
lation results [red lines in Figs. 2(c) and 2(d)].
In addition to their persistent centroid motion, the

fluctuations along the strings are also highly spatially
correlated [Fig. 1(c) and SM movies 2 and 3 [43] ].
These mesoscale spatial correlations emerge from the

active driving coupling to the long wavelength elastic
modes [14,15].
To illustrate this, we analyze the correlations of the bond

vectors, i.e., bn ¼ rn − rn−1, at different positions on the
traveling strings [see Fig. 1(e)]. We find new active
contributions which are due to the finite time correlations
in the directions of local active driving. The relevant
correlation function is the correlation between the devia-
tions of the bonds from those of a rigid column:
Bn ¼ Rn −Rn−1 ¼ bn − ð0; 0; aÞ. We obtain an exact
expression for this bond-vector deviation correlation func-
tion, Ctðn; n0Þ ¼ hBn · Bn0 i, using the higher Rouse modes
(see SM Sec. 3.5 [43]): Ctðn; nÞ ¼ ð2aDa=ξDRÞ
ðe−ða=ξÞ − 1Þ þ 2ζ

�½ðDT þDaÞ=κ11� þ ðDT=2κ33Þ
�
≔ Ct0

when n ¼ n0, and

Ctðn; n0Þ ¼
aDa

ξDR

	
e
a
ξ þ e−

a
ξ − 2



e−

a
ξjn−n0j; ð5Þ

which is valid when the bonds are far from the ends,
1 ≪ n ≠ n0 ≪ N. Here, Da ¼ ðv20=2DRÞ is the active
contribution to the ABP effective translational diffusion
coefficient. The correlation length ξ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðκ11=DRζÞ
p

of
the exponential decay scales as the square root of active
persistence time (Fig. S2.4a [43]). We note that in the
thermal limit, the system is a flexible chain with no bond
vector correlations when n ≠ n0, i.e., the correlations are a
purely active effect. Figure S2.4b shows how in the thermal
limit DR → ∞, the n ¼ n0 part of Ct decays to a constant
proportional to DT , whereas for jn − n0j ≠ 0 it decays to 0.
Equation (5) is an excellent match to simulations of an
isolated (noninteracting) string system over severalDR [see
Fig. 3(a)]. In the simulations we have subtracted the mean
squared equilibrium distance between two consecutive
particles, a2 from hbn · bn0 i. For interacting strings [see
Fig. 3(b)], there is still excellent agreement if we modify
the reference state for the bond deviations: Bn ¼ bn −
ð0; 0; aemÞ, with aem determined by an empirical least
squares fit. In Fig. S2.5, we show correlations for a range
of DR and the best fit aem=a.
Here, we focus experiments with an external electric

field amplitude E ¼ 1
3
V=μm at 5 kHz frequency, giving us

(a) (b)

FIG. 3. Bond vector correlation functions in noninteracting (a)
and interacting (b) string systems. Parameters are p ¼ 1,
v0 ¼ 0.5, ðDT=σ̄2DRÞ ¼ ð1=300Þ. Points are simulation data,
lines are theoretical predictions.
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an individual particle Péclet number Pe ≈ 20. Because of
limited z resolution, we use TRACKPY [47] to first identify
particles with good xy accuracy in individual z layers
vertically spaced by aeff ¼ 2.6 μm, the effective particle
spacing at this salt concentration.
We find a landscape of cairnlike strings [48] (columns)

with variable height growing from the bottom surface, due
to the finite gravitational length [Fig. 4(a)]. To identify
strings, we developed a clustering algorithm that follows
strings from the top to the bottom by connecting to the
nearest point, if any, within aeff . Because of the finite scan
time for each z layer, moving from the bottom to the top of
the image and the fact that the strings are self-propelled,
moving with instantaneous velocity v in the xy plane, the
observed strings appear tilted. If the scan time of the string
τs is less than D−1

R , the string approximately travels in a
fixed direction during the scan (we estimate τs ≲D−1

R ). We
can then measure the velocity v of traveling strings from the
tilt angle (and plane) of the strings. We perform a least-
squares analysis on the beads in the string to obtain a best
fit straight line, ls making an angle θs with ẑ ¼ ð0; 0; 1Þ.
(θs < ðπ=2Þ). If in a time τs, the camera has scanned up to
height zs, then the string angle θs and its instantaneous
speed v ¼ jvj are related by vτs ¼ tan θszs. Using our
imaging parameters, we find v ¼ 1.5802 tan θs μms−1 in
our experiment. By averaging v over strings with the same
length N we find that the mean v decays with N as ð1= ffiffiffiffi

N
p Þ

[Fig. 4(b)], which is consistent with our simulations
(performed near a bottom wall) and theory.
In conclusion, we have studied a string forming 3D

active dipolar colloidal system using simulations, theory,
and experiment. The collective dynamics of traveling
strings, derived analytically and confirmed by numerical
simulations and experimental analyses, has a simple
dependence on string length. At low volume fractions,
the string dynamics is well described by an active aniso-
tropic Rouse model, showing emergent active bond vector
correlations. In future work we plan to extend our analysis

to the active sheets and labyrinth appearing at higher
volume fractions [35], where we also expect additional
hydrodynamic contributions to the dynamics.
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